A model of flow separation at a free surface

1973 ◽  
Vol 57 (1) ◽  
pp. 129-148 ◽  
Author(s):  
M. S. Longuet-Higgins

Flow separation can be observed (1) at the leading edge of a spilling breaker or ‘white-cap’, (2) at the lower edge of a tidal bore or hydraulic jump and (3) upstream of an obstacle abutting a steady free-surface flow. At the point of flow separation there is a discontinuity in the slope of the free surface. The flow upstream of this point is relatively smooth; the flow downstream of the discontinuity is turbulent.In this note, a local solution for the flow in the neighbourhood of the discontinuity is derived. The turbulence is represented by a constant eddy viscosity N, and the tangential stress across the interface between the laminar and turbulent zones is expressed in terms of a drag coefficient C. It is shown that the inclinations of the free surface of the two sides of the discontinuity depend on C only, and are independent of N and g. As C increases from zero to large values, so the inclination of the free surface in the turbulent zone increases from 10° 54′ to 30°. In the laminar zone the inclination of the free surface simultaneously decreases from 10° 54′ to 0°, the densities in the two zones being assumed equal.Owing to the possible entrainment of air at the separation point, the effective density ρ′ in the turbulent zone may be less than the density ρ in the laminar zone. When these densities are allowed to be different it is found that the possible flows are of two distinct types. Flows of the first type, called ‘quasi-static’, are contiguous to a state of rest. Flows of the second type, called ‘dynamic’, are contiguous with the frictional flows described above, for which ρ′ = ρ At a given positive value of C there exists generally only one quasi-static solution. There is also just one dynamic solution provided ρ′/ρ > 0·50012. On the other hand, if ρ′/ρ < 0·5 there may be either two or no dynamic flows, depending on the value of C; and when 0·5 < ρ′/ρ > 0·50012 there may be three such flows.The inclination of the free surface is studied as a function of C and ρ′/ρ.

Author(s):  
Motohiko Nohmi ◽  
Naoya Ochiai ◽  
Yuka Iga ◽  
Toshiaki Ikohagi

Cavitation of a hydrofoil is observed in detail by using a high speed video camera. A paint removal test is also carried out in order to evaluate cavitation aggressiveness for erosion. 2D hydrofoil profile is Clark Y 11.7% and its angle of attack is seven degrees. Cavitation number is σ = 1.08. The experimental results are compared with cavitation CFD. Numerous features of unsteady cavitation are observed such as cyclic fluctuation of the sheet cavity, existence of the glassy cones on a sheet cavity, generation of the cloud cavitation from the sheet cavity and the isolated bubbles traveling over the suction surface of the blade. The isolated traveling bubbles and their collapses are thought to be one of the main causes of the severe paint removals. The isolated traveling bubbles are derived from the flowing cavitation nucleus or from abrupt onset at the leading edge of the blade. For computing these complicated phenomena, combination of grid scale bubbles (GSB) and sub grid scale bubble model (SGSB) are proposed. GSB shall be computed by using the computational scheme for the free surface with phase change model. SGSB can be computed with conventional cavitation model. The breakup of GSB generates SGSB, and the coalescence of SGSB makes GSB. Upper limit of void fraction of SGSB is estimated in the range of five or ten percent from the simple speculation of the structure of packed spheres. The two types of cavitation bubble inception model are also discussed based on the generation of the isolated bubbles observed in the experiments. To verify the proposed concepts of cavitation model, a traveling air bubble over a hydrofoil is computed by using the free surface flow scheme of Volume of Fluid (VOF) approach. Cavitation on the hydrofoil is also computed by VOF approach with boiling model concerning the heat transfer. Both the computed results show qualitatively similar characteristics of the bubble dynamics to those in experimental results.


1975 ◽  
Vol 3 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Thomas G. Smith ◽  
J.O. Wilkes

Author(s):  
Arthur E. P. Veldman ◽  
Henk Seubers ◽  
Peter van der Plas ◽  
Joop Helder

The simulation of free-surface flow around moored or floating objects faces a series of challenges, concerning the flow modelling and the numerical solution method. One of the challenges is the simulation of objects whose dynamics is determined by a two-way interaction with the incoming waves. The ‘traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object becomes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The paper will focus on this issue. To demonstrate the quasi-simultaneous method, a number of simulation results for engineering applications from the offshore industry will be presented, such as the motion of a moored TLP platform in extreme waves, and a free-fall life boat dropping into wavy water.


2005 ◽  
Vol 63 (5-7) ◽  
pp. e1897-e1908 ◽  
Author(s):  
E. Miglio ◽  
S. Perotto ◽  
F. Saleri

Sign in / Sign up

Export Citation Format

Share Document