An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions

1986 ◽  
Vol 163 ◽  
pp. 141-147 ◽  
Author(s):  
J. M. Dorrepaal

A similarity solution is found which describes the flow impinging on a flat wall at an arbitrary angle of incidence. The technique is similar to a method used by Jeffery (1915) and discussed more recently by Peregrine (1981).

2017 ◽  
Vol 13 (2) ◽  
pp. 7123-7134 ◽  
Author(s):  
A. S. J Al-Saif ◽  
Takia Ahmed J Al-Griffi

We have proposed in this  research a new scheme to find analytical  approximating solutions for Navier-Stokes equation  of  one  dimension. The  new  methodology depends on combining  Adomian  decomposition  and Homotopy perturbation methods  with the splitting time scheme for differential operators . The new methodology is applied on two problems of  the test: The first has an exact solution  while  the other one has no  exact solution. The numerical results we  obtained  from solutions of two problems, have good convergent  and high  accuracy   in comparison with the two traditional Adomian  decomposition  and Homotopy  perturbationmethods . 


2014 ◽  
Vol 3 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Gunvant A. Birajdar

AbstractIn this paper we find the solution of time fractional discrete Navier-Stokes equation using Adomian decomposition method. Here we discretize the space domain. The graphical representation of solution given by using Matlab software, and it compared with exact solution for alpha = 1.


Sign in / Sign up

Export Citation Format

Share Document