Substructures in a turbulent spot

1988 ◽  
Vol 197 ◽  
pp. 389-414 ◽  
Author(s):  
R. Sankaran ◽  
M. Sokolov ◽  
R. A. Antonia

Substructures within a turbulent spot which develops in a slightly heated laminar boundary layer have been identified using arrays of cold wires aligned in either a streamwise direction or in a direction normal to the wall. At any given streamwise distance from the spot origin, histograms of the number of detected substructures exhibit a peak, defining the most probable spot or the spot with the most likely number of substructures. The number of substructures in the most probable spot increases with streamwise distance but all substructures are convected at approximately the same velocity for any given distance from the wall. This velocity is approximately equal to that of the leading edge of the spot and increases slightly with distance from the wall. The increase in the number of substructures accounts for the streamwise growth of the spot. A simple relation is derived for determining the number of substructures at a particular streamwise station and a geometrical construction is proposed for identifying the origin of a new substructure. There is sufficient evidence for suggesting that the new substructures are formed near the trailing edge of the spot. The convection velocity, inclination and lengthscales of the substructures compare favourably with the corresponding characteristics of hairpin vortices.

1980 ◽  
Vol 23 (12) ◽  
pp. 2561 ◽  
Author(s):  
M. Sokolov ◽  
R. A. Antonia ◽  
A. J. Chambers

1987 ◽  
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

In this paper, foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-Layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydro­dynamic characteristics are very much dependent on location and mode of boundary-Layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is lea ding-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.


1960 ◽  
Vol 64 (599) ◽  
pp. 668-672 ◽  
Author(s):  
T. W. F. Moore

Summary:The results of experiments on the reattachment of a laminar boundary layer, separating from a rearward facing step in a flat plate aerofoil, are correlated with the properties of the short leading edge bubble which forms on thin aerofoils near the stall.The experiments, comprising pressure measurements, Pitot explorations, liquid film and smoke studies, indicate that for all Reynolds numbers above the value given by the Owen-KIanfer criterion the reattachment is turbulent behind a stationary air reverse flow vortex bubble. It is also found that the reattachment is laminar for Reynolds numbers below the critical, which further supports Crabtree's interpretation of the Owen-KIanfer criterion in terms of the condition for the growth of turbulent bursts.


1988 ◽  
Vol 186 ◽  
pp. 223-241 ◽  
Author(s):  
B. Y. Wang ◽  
I. I. Glass

The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions: the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a series-expansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.


1991 ◽  
Vol 225 ◽  
pp. 575-606 ◽  
Author(s):  
Jacob Cohen ◽  
Kenneth S. Breuer ◽  
Joseph H. Haritonidis

The transition process of a small-amplitude wave packet, generated by a controlled short-duration air pulse, to the formation of a turbulent spot is traced experimentally in a laminar boundary layer. The vertical and spanwise structures of the flow field are mapped at several downstream locations. The measurements, which include all three velocity components, show three stages of transition. In the first stage, the wave packet can be treated as a superposition of two- and three-dimensional waves according to linear stability theory, and most of the energy is centred around a mode corresponding to the most amplified wave. In the second stage, most of the energy is transferred to oblique waves which are centred around a wave having half the frequency of the most amplified linear mode. During this stage, the amplitude of the wave packet increases from 0.5 % to 5 % of the free-stream velocity. In the final stage, a turbulent spot develops and the amplitude of the disturbance increases to 27 % of the free-stream velocity.Theoretical aspects of the various stages are considered. The amplitude and phase distributions of various modes of all three velocity components are compared with the solutions provided by linear stability theory. The agreement between the theoretical and measured distributions is very good during the first two stages of transition. Based on linear stability theory, it is shown that the two-dimensional mode of the streamwise velocity component is not necessarily the most energetic wave. While linear stability theory fails to predict the generation of the oblique waves in the second stage of transition, it is demonstrated that this stage appears to be governed by Craik-type subharmonic resonances.


1989 ◽  
Vol 33 (02) ◽  
pp. 145-155
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

Foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydrodynamic characteristics are very much dependent on location and mode of boundary-layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is leading-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.


Sign in / Sign up

Export Citation Format

Share Document