Distortion of a flat-plate boundary layer by free-stream vorticity normal to the plate

1992 ◽  
Vol 237 ◽  
pp. 231-260 ◽  
Author(s):  
M. E. Goldstein ◽  
S. J. Leib ◽  
S. J. Cowley

We consider a nominally uniform flow over a semi-infinite flat plate. Our analysis shows how a small streamwise disturbance in the otherwise uniform flow ahead of the plate is amplified by leading-edge bluntness effects and eventually leads to a small-amplitude but nonlinear spanwise motion far downstream from the leading edge of the plate. This spanwise motion is then imposed on the viscous boundary-layer flow at the surface of the plate – causing an order-one change in its profile shape. This ultimately reduces the wall shear stress to zero – causing the boundary layer to undergo a localized separation, which may be characterized as a kind of bursting phenomenon that could be related to the turbulent bursts observed in some flat-plate boundary-layer experiments.

1993 ◽  
Vol 248 ◽  
pp. 531-541 ◽  
Author(s):  
M. E. Goldstein ◽  
S. J. Leib

The purpose of this note is to construct a local solution that eliminates a residual velocity discontinuity in the inviscid portion of a solution obtained in a recent paper by Goldstein, Leib & Cowley (1992). This result is of importance because it shows that the solution obtained in that paper is entirely non-singular outside the viscous wall boundary layer and that any singularity in the problem will have to arise in the usual way through a breakdown in the viscous boundary layer.


Author(s):  
R. E. Mayle ◽  
K. Dullenkopf

A theory for transition from laminar to turbulent flow as the result of unsteady, periodic passing of turbulent wakes in the free stream is developed using Emmons’ transition model. Comparisons made to flat plate boundary layer measurements and airfoil heat transfer measurements confirm the theory.


Author(s):  
Seyed Mohammad Hasheminejad ◽  
Hatsari Mitsudharmadi ◽  
S. H. Winoto ◽  
Kim Boon Lua ◽  
Hong Tong Low

The evolution of streamwise counter-rotating vortices induced by different leading edge patterns is investigated quantitatively using hot-wire anemometer. A notched and triangular leading edge with the same wavelength and amplitude were designed to induce streamwise vortices over a flat plate at Reynolds number (based on the wavelength of the leading edge patterns) of 3080 corresponding to free-stream velocity of 3 m/s. The streamwise velocity at different streamwise locations collected and analyzed using a single wire probe hot-wire anemometer showed reveal different characteristics of boundary layer flow due to the presence of these two leading edge patterns. The major difference is the appearance of an additional streamwise vortex between the troughs of the notched pattern. Such vortices increase the mixing effect in the boundary layer as well as the velocity profile.


Sign in / Sign up

Export Citation Format

Share Document