scholarly journals Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow

1994 ◽  
Vol 280 ◽  
pp. 1-40 ◽  
Author(s):  
H.-J. Kaltenbach ◽  
T. Gerz ◽  
U. Schumann

By means of large-eddy simulation, homogeneous turbulence is simulated for neutrally and stably stratified shear flow at gradient-Richardson numbers between zero and one. We investigate the turbulent transport of three passive species which have uniform gradients in either the vertical, downstream or cross-stream direction. The results are compared with previous measurements in the laboratory and in the stable atmospheric boundary layer, as well as with results from direct numerical simulations. The computed and measured flow properties agree with each other generally within the scatter of the measurements. At strong stratification, the Froude number becomes the relevant flow-controlling parameter. Stable stratification suppresses vertical overturning and mixing when the inverse Froude number based on a turn-over timescale exceeds a critical value of about 3. The turbulent diffusivity tensor is strongly anisotropic and asymmetric. However, only the vertical and the cross-stream diagonal components are of practical importance in shear flows. The vertical diffusion coefficient is much smaller than the cross-stream one at strong stratification. This anisotropy is stronger than predicted by second-order closure models. Turbulence fluxes in downstream and cross-stream directions follow classical mixing-length models.

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 292-300 ◽  
Author(s):  
Jongil Han ◽  
Yuh-Lang Lin ◽  
David G. Schowalter ◽  
S. P. Arya ◽  
Fred H. Proctor

Sign in / Sign up

Export Citation Format

Share Document