aircraft wake
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 2)

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Weijun Pan ◽  
Haoran Yin ◽  
Yuanfei Leng ◽  
Xiaolei Zhang

2021 ◽  
Author(s):  
Hao Wang ◽  
Weijun Pan ◽  
Yuming Luc ◽  
Sirui Zheng

Author(s):  
Dong Li ◽  
Ziming Xu ◽  
Ke Zhang ◽  
Zeyu Zhang ◽  
Jinxin Zhou ◽  
...  

Environmental crosswind can greatly affect the development of aircraft wake vortex pair. Previous numerical simulations and experiments have shown that the nonlinear vertical shear of the crosswind velocity can affect the dissipation rate of the aircraft wake vortex, causing each vortex of the vortex pair descent with different velocity magnitude, which will lead to the asymmetrical settlement and tilt of the wake vortex pair. Through numerical simulations, this article finds that uniform crosswind convection and linear vertical shear crosswind convection can also have an effect on the strength of the vortex. This effect is inversely proportional to the cube of the vortex spacing, so it is more intense on small separation vortex pair. In addition, the superposition of crosswind and vortex-induced velocities will lead to the asymmetrical pressure distribution around the vortex pair, which will also cause the tilt of the vortex pair. Furthermore, a new analysis method for wake vortex is proposed, which can be used to predict the vortex trajectory.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Xiaoying Liu ◽  
Xinyu Zhang ◽  
Xiaochun Zhai ◽  
Hongwei Zhang ◽  
Bingyi Liu ◽  
...  

The observation and identification of wake vortex are considered important factors to reduce aviation accidents and increase airport capacity. In addition to aircraft parameters, the evolution process of the wake vortex is strongly related to atmospheric conditions, including crosswind, headwind, atmospheric turbulence, and temperature stratification. Crosswind generally affects the wake vortex trajectories by transporting them to the downwind direction. Additionally, the circulation attenuation of wake vortex is also influenced by crosswind shear or turbulence related to crosswind. This paper implemented the range height indicator (RHI) scanning mode of pulsed coherent Doppler lidar (PCDL) to study the influence of crosswind on wake vortex evolution. The crosswind was obtained from the non-wake vortex regions of the RHI sectors. The method, based on the measurements of radial velocity and spectrum with the broadening feature, was performed to locate wake vortex cores. The wake vortex trajectories with various crosswind strengths were comprehensively analyzed.


2020 ◽  
Vol 14 (12) ◽  
pp. 1958-1967
Author(s):  
Chun Shen ◽  
Jian-bing Li ◽  
Fu-lin Zhang ◽  
Pak-wai Chan ◽  
Kai-kwong Hon ◽  
...  

Author(s):  
Julio Roa ◽  
Antonio Trani ◽  
Junqi Hu ◽  
Navid Mirmohammadsadeghi

This paper presents an evaluation of runway operations at Chicago O’Hare International Airport to estimate the impact of proposed wake vortex separation including Recategorization Phase II and III dynamic separations. The evaluation uses a Monte Carlo simulation model that considers arrival and departure operations. The simulation accounts for static and dynamic wake vortex separations, aircraft fleet mix, runway occupancy times, aircraft approach speeds, aircraft wake circulation capacity, environmental conditions, and operational error buffers. Airport data considered for this analysis are based on Airport Surface Detection Equipment Model X records from Chicago O’Hare International Airport from January to November 2016. Dynamic wake separations are tailored to each unique set of conditions by using environmental and aircraft performance parameters as input and allowing aircraft to be exposed to the same wake vortex strength as in Recategorization Phase II (RECAT II). The analysis shows that further reductions beyond RECAT II for aircraft pairs separated by 2 nautical miles or less is not operationally feasible. These wake separations already result in little to no wake dependency. When this is the case, the challenges in wake separation are to meet runway occupancy times and to make sure aircraft separations allow for human operational variations without resulting in aircraft turnarounds or double-aircraft-occupancy runway violations.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Weijun Pan ◽  
Zhengyuan Wu ◽  
Xiaolei Zhang

The aircraft wake vortex has important influence on the operation of the airspace utilization ratio. Particularly, the identification of aircraft wake vortex using the pulsed Doppler lidar characteristics provides a new knowledge of wake turbulence separation standards. This paper develops an efficient pattern recognition-based method for identifying the aircraft wake vortex measured with the pulsed Doppler lidar. The proposed method is outlined in two stages. (i) First, a classification model based on support vector machine (SVM) is introduced to extract the radial velocity features in the wind fields by combining the environmental parameters. (ii) Then, grid search and cross-validation based on soft margin SVM with kernel tricks are employed to identify the aircraft wake vortex, using the test dataset. The dataset includes wake vortices of various aircrafts collected at the Chengdu Shuangliu International Airport from Aug 16, 2018, to Oct 10, 2018. The experimental results on dataset show that the proposed method can identify the aircraft wake vortex with only a small loss, which ensures the satisfactory robustness in detection performance.


Sign in / Sign up

Export Citation Format

Share Document