homogeneous shear
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 14)

H-INDEX

28
(FIVE YEARS 2)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 34
Author(s):  
Hechmi Khlifi ◽  
Adnen Bourehla

This work focuses on the performance and validation of compressible turbulence models for the pressure-strain correlation. Considering the Launder Reece and Rodi (LRR) incompressible model for the pressure-strain correlation, Adumitroaie et al., Huang et al., and Marzougui et al., used different modeling approaches to develop turbulence models, taking into account compressibility effects for this term. Two numerical coefficients are dependent on the turbulent Mach number, and all of the remaining coefficients conserve the same values as in the original LRR model. The models do not correctly predict the compressible turbulence at a high-speed shear flow. So, the revision of these models is the major aim of this study. In the present work, the compressible model for the pressure-strain correlation developed by Khlifi−Lili, involving the turbulent Mach number, the gradient, and the convective Mach numbers, is used to modify the linear mean shear strain and the slow terms of the previous models. The models are tested in two compressible turbulent flows: homogeneous shear flow and the newly developed plane mixing layers. The predicted results of the proposed modifications of the Adumitroaie et al., Huang et al., and Marzougui et al., models and of its universal versions are compared with direct numerical simulation (DNS) and experiment data. The results show that the important parameters of compressibility in homogeneous shear flow and in the mixing layers are well predicted by the proposal models.


2021 ◽  
Vol 33 (12) ◽  
pp. 125128
Author(s):  
Yuandong Chen ◽  
Xiaoning Wang ◽  
Zhou Jiang ◽  
Jianchun Wang

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Ping-Fan Yang ◽  
Alain Pumir ◽  
Haitao Xu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document