Similarity solutions for viscous vortex cores

1992 ◽  
Vol 238 ◽  
pp. 487-507 ◽  
Author(s):  
Ernst W. Mayer ◽  
Kenneth G. Powell

Results are presented for a class of self-similar solutions of the steady, axisymmetric Navier–Stokes equations, representing the flows in slender (quasi-cylindrical) vortices. Effects of vortex strength, axial gradients and compressibility are studied. The presence of viscosity is shown to couple the parameters describing the core growth rate and the external flow field, and numerical solutions show that the presence of an axial pressure gradient has a strong effect on the axial flow in the core. For the viscous compressible vortex, near-zero densities and pressures and low temperatures are seen on the vortex axis as the strength of the vortex increases. Compressibility is also shown to have a significant influence upon the distribution of vorticity in the vortex core.

2016 ◽  
Vol 793 ◽  
pp. 353-379 ◽  
Author(s):  
Eric Stout ◽  
Fazle Hussain

External turbulence-induced axial flow in an incompressible, normal-mode stable Lamb–Oseen (two-dimensional) vortex column is studied via direct numerical simulations of the Navier–Stokes equations. Azimuthally oriented vorticity filaments, formed from external turbulence, advect radially towards or away from the vortex axis (depending on the filament’s swirl direction), resulting in a net induced axial flow in the vortex core; axial flow increases with increasing vortex Reynolds number ($Re=$ vortex circulation/viscosity). This contrasts the viscous mechanism for axial flow generation downstream of a lifting body, wherein an axial pressure gradient is produced by viscous diffusion of the swirl (Batchelor, J. Fluid Mech., vol. 20, 1964, pp. 645–658). Analysis of the self-induced motion of an arbitrarily curved external filament shows that any non-axisymmetric filament undergoes radial advection. We then studied the evolution of a vortex column starting with an imposed optimal transient growth perturbation. For a range of Re values, axial flow develops and initially grows as (time)$^{5/2}$ before decreasing after two turnover times; for $Re=10\,000$ – the highest computationally achievable – axial flow at late times becomes sufficiently strong to induce vortex instability. Contrary to a prior claim of a parent–offspring mechanism at the outer edge of the core, vorticity tilting within the core by axial flow is the underlying mechanism producing energy growth. Thus, external perturbations in practical flows (at $Re\sim 10^{7}$) produce destabilizing axial flow, possibly leading to the sought-after vortex breakup.


1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.


2019 ◽  
Vol 352 ◽  
pp. 981-1043 ◽  
Author(s):  
Baishun Lai ◽  
Changxing Miao ◽  
Xiaoxin Zheng

In the one hundred years since Rankine suggested his well known two-dimensional vortex model with finite core, no one has ever found any exact vortex solutions of the Navier-Stokes equations that can satisfy a complete set of physical boundary conditions. In this paper a variable viscosity is introduced and the existence of conical turbulent vortex solutions of the Navier-Stokes equations is examined. It is found that for a class of deliberately chosen eddy viscosity function a steady turbulent vortex can, for the first time, satisfy both the regularity condition at the core and the adherence condition at the surface, except for a singularity at the origin inherent in all conical similarity solutions. In its asymptotic form, if the eddy viscosity only varies in a boundary layer near the surface or the core, outside the layer the solution given would approach one of the laminar solutions of Yih et al . ( Physics Fluids 25, 2147 (1982)) or that of Serrin ( Phil. Trans. R. Soc. Lond. A 271, 325 (1972)) respectively. These results reveal some remarkable relations between the behaviour, and even the existence, of a vortex and turbulence.


Sign in / Sign up

Export Citation Format

Share Document