scholarly journals Hydrodynamics of quantum corrections to the Coulomb interaction via the third rank tensor evolution equation: application to Langmuir waves and spin-electron acoustic waves

2021 ◽  
Vol 87 (5) ◽  
Author(s):  
Pavel A. Andreev

The quantum effects in plasmas can be described by the hydrodynamics containing the continuity and Euler equations. However, novel quantum phenomena are found via the extended set of hydrodynamic equations, where the pressure evolution equation and the pressure flux third-rank tensor evolution equation are included. These give the quantum corrections to the Coulomb interaction. The spectra of the Langmuir waves and the spin-electron acoustic waves are calculated. The application of the pressure evolution equation ensures that the contribution of pressure in the Langmuir wave spectrum is proportional to $(3/5)v_{\textrm {Fe}}^{2}$ rather than $(1/3)v_{\textrm {Fe}}^{2}$ , where $v_{\textrm {Fe}}$ is the Fermi velocity.

2019 ◽  
Vol 26 (12) ◽  
pp. 122101
Author(s):  
Pavel A. Andreev ◽  
T. G. Golubeva (Kiriltseva) ◽  
Punit Kumar ◽  
L. S. Kuz'menkov

Author(s):  
Hilmi Demiray

AbstractIn the present work, employing a one-dimensional model of a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution and stationary ions, we study the amplitude modulation of electron-acoustic waves by use of the conventional reductive perturbation method. Employing the field equations with fractional power type of nonlinearity, we obtained the nonlinear Schrödinger equation as the evolution equation of the same order of nonlinearity. Seeking a harmonic wave solution with progressive wave amplitude to the evolution equation it is found that the NLS equation with fractional power assumes envelope type of solitary waves.


2000 ◽  
Vol 105 (A6) ◽  
pp. 12919-12927 ◽  
Author(s):  
D. Schriver ◽  
M. Ashour-Abdalla ◽  
V. Sotnikov ◽  
P. Hellinger ◽  
V. Fiala ◽  
...  

Pramana ◽  
2015 ◽  
Vol 86 (4) ◽  
pp. 873-883 ◽  
Author(s):  
KAUSHIK ROY ◽  
SWAPAN KUMAR GHOSH ◽  
PRASANTA CHATTERJEE

2018 ◽  
Vol 25 (10) ◽  
pp. 102115 ◽  
Author(s):  
Pavel A. Andreev ◽  
S. V. Kolesnikov

2014 ◽  
Vol 32 (8) ◽  
pp. 975-989 ◽  
Author(s):  
R. A. Treumann ◽  
W. Baumjohann

Abstract. Coagulation of electrons to form macro-electrons or compounds in high temperature plasma is not generally expected to occur. Here we investigate, based on earlier work, the possibility for such electron compound formation (non-quantum "pairing") mediated in the presence of various kinds of plasma waves via the generation of attractive electrostatic potentials, the necessary condition for coagulation. We confirm the possibility of production of attractive potential forces in ion- and electron-acoustic waves, pointing out the importance of the former and expected consequences. While electron-acoustic waves presumably do not play any role, ion-acoustic waves may potentially contribute to formation of heavy electron compounds. Lower-hybrid waves also mediate compound formation but under different conditions. Buneman modes which evolve from strong currents may also potentially cause non-quantum "pairing" among cavity-/hole-trapped electrons constituting a heavy electron component that populates electron holes. The number densities are, however, expected to be very small and thus not viable for justification of macro-particles. All these processes are found to potentially generate cold compound populations. If such electron compounds are produced by the attractive forces, the forces provide a mechanism of cooling a small group of resonant electrons, loosely spoken, corresponding to classical condensation.


2006 ◽  
Author(s):  
Francesco Valentini ◽  
Thomas M. O’Neil ◽  
Daniel H. E. Dubin

Sign in / Sign up

Export Citation Format

Share Document