Relative consistency of an extension of Ackermann's set theory

1976 ◽  
Vol 41 (2) ◽  
pp. 465-466
Author(s):  
John Lake

The set theory AFC was introduced by Perlis in [2] and he noted that it both includes and is stronger than Ackermann's set theory. We shall give a relative consistency result for AFC.AFC is obtained from Ackermann's set theory (see [2]) by replacing Ackermann's set existence schema with the schema(where ϕ, ψ, are ∈-formulae, x is not in ψ, w is not in ϕ, y is y1, …, yn, z is z1, …, zm and all free variables are shown) and adding the axiom of choice for sets. Following [1], we say that λ is invisible in Rκ if λ < κ and we haveholding for every ∈-formula θ which has exactly two free variables and does not involve u or υ. The existence of a Ramsey cardinal implies the existence of cardinals λ and κ with λ invisible in Rκ, and Theorem 1.13 of [1] gives some further indications about the relative strength of the notion of invisibility.Theorem. If there are cardinals λ and κ with λ invisible in Rκ, then AFC is consistent.Proof. Suppose that λ is invisible in Rκ and we will show that 〈Rκ, Rλ, ∈〉 ⊧ AFC (Rλ being the interpretation of V, of course).

1987 ◽  
Vol 52 (2) ◽  
pp. 374-387 ◽  
Author(s):  
T. E. Forster

We shall be concerned here with weak axiomatic systems of set theory with a universal set. The language in which they are expressed is that of set theory—two primitive predicates, = and ϵ, and no function symbols (though some function symbols will be introduced by definitional abbreviation). All the theories will have stratified axioms only, and they will all have Ext (extensionality: (∀x)(∀y)(x = y· ↔ ·(∀z)(z ϵ x ↔ z ϵ y))). In fact, in addition to extensionality, they have only axioms saying that the universe is closed under certain set-theoretic operations, viz. all of the formand these will always include singleton, i.e., ι′x exists if x does (the iota notation for singleton, due to Russell and Whitehead, is used here to avoid confusion with {x: Φ}, set abstraction), and also x ∪ y, x ∩ y and − x (the complement of x). The system with these axioms is called NF2 in the literature (see [F]). The other axioms we consider will be those giving ⋃x, ⋂x, {y: y ⊆x} and {y: x ⊆ y}. We will frequently have occasion to bear in mind that 〈 V, ⊆ 〉 is a Boolean algebra in any theory extending NF2. There is no use of the axiom of choice at any point in this paper. Since the systems with which we will be concerned exhibit this feature of having, in addition to extensionality, only axioms stating that V is closed under certain operations, we will be very interested in terms of the theories in question. A T-term, for T such a theory, is a thing (with no free variables) built up from V or ∧ by means of the T-operations, which are of course the operations that the axioms of T say the universe is closed under.


1989 ◽  
Vol 21 (62) ◽  
pp. 55-66
Author(s):  
José Alfredo Amor

The so called Generalized Continuum Hypothesis (GCH) is the sentence: "If A is an infinile set whose cardinal number is K and 2K denotes the cardinal number of the set P(A) of subsets of A (the power set of A), and K + denotes the succesor cardinal of K, then 2K = K +". The Continuum Hypothesis (CH) asserts the particular case K = o. It is clear that GCH implies CH. Another equivalent version of GCH, is the sentence: 'Any subset of the set of subsets of a given infinite set is or of cardinality less or equal than the cardinality of the given set, or of the cardinality of all the set of subsets". Gödel in 1939, and Cohen in 1963, settled the relative consistency of the Axiom of Choice (AC) and of its negation not-AC, respectively, with respecllo the Zermelo-Fraenkel set theory (ZF). On the other hand, Gödel in 1939, and Cohen in 1963 settled too, the relative consistency of GCH , CH and of its negations not-GCH, not-CH, respectively, with respect to the Zermelo-Fraenkel set theory with the Axiom of Choice (ZF + AC or ZFC). From these results we know that GCH and AC are undecidable sentences in ZF set theory and indeed, the most famous undecidable sentences in ZF; but, which is the relation between them? From the above results, in the theory ZF + AC is not demonstrated GCH; it is clear then that AC doesn't imply GCH in ZF theory, Bul does GCH implies AC in ZF theory? The answer is yes! or equivalently, there is no model of ZF +GCH + not-AC. A very easy proof can be given if we have an adecuate definition of cardinal number of a set, that doesn't depend of AC but depending from the Regularity Axiom, which asserls that aIl sets have a range, which is an ordinal number associated with its constructive complexity. We define the cardinal number of A, denoted |A|, as foIlows: |A|= { The least ordinal number equipotent with A, if A is well orderable The set of all sets equipotent with A and of minimum range, in other case. It is clear that without AC, may be not ordinal cardinals and all cardinals are ordinal cardinals if all sets are well orderable (AC). Now we formulate: GCH*: For all ordinal cardinal I<, 2K = I< + In the paper is demonstrated that this formulation GCH* is implied by the traditional one, and indeed equivalent to it. Lemma, The power set of any well orderable set is well orderable if and only if AC. This is one of the many equivalents of AC in ZF,due lo Rubin, 1960. Proposition. In ZF is a theorem: GCH* implies AC. Supose GCH*. Let A be a well orderable set; then |A| = K an ordinal cardinal, so A is equipotent with K and then P~A) is equipotent with P(K); therefore |P(A)I|= |P(K)| = 2K = K+. But then |P(A)|= K+ and P(A) 'is equipotent with K+ and K+ is an ordinal cardinal; therefore P(A) is well orderable with the well order induced by means of the bijection, from the well order of K+. Corolary: In ZF are theorems: GCH impIies AC and GCH is equivalent to GCH*. We see from this proof, that GCH asserts that the cardinal number of the power set of a well orderable set A is an ordinal, which is equivalent to AC, but GCH asserts also that that ordinal cardinal is |A|+ , the ordinal cardinal succesor of the ordinal cardinal of the well orderable set A.


2003 ◽  
Vol 6 ◽  
pp. 198-248 ◽  
Author(s):  
Lawrence C. Paulson

AbstractThe proof of the relative consistency of the axiom of choice has been mechanized using Isabelle⁄ZF, building on a previous mechanization of the reflection theorem. The heavy reliance on metatheory in the original proof makes the formalization unusually long, and not entirely satisfactory: two parts of the proof do not fit together. It seems impossible to solve these problems without formalizing the metatheory. However, the present development follows a standard textbook, Kenneth Kunen's Set theory: an introduction to independence proofs, and could support the formalization of further material from that book. It also serves as an example of what to expect when deep mathematics is formalized.


Author(s):  
Alexander R. Pruss

This is a mainly technical chapter concerning the causal embodiment of the Axiom of Choice from set theory. The Axiom of Choice powered a construction of an infinite fair lottery in Chapter 4 and a die-rolling strategy in Chapter 5. For those applications to work, there has to be a causally implementable (though perhaps not compatible with our laws of nature) way to implement the Axiom of Choice—and, for our purposes, it is ideal if that involves infinite causal histories, so the causal finitist can reject it. Such a construction is offered. Moreover, other paradoxes involving the Axiom of Choice are given, including two Dutch Book paradoxes connected with the Banach–Tarski paradox. Again, all this is argued to provide evidence for causal finitism.


1972 ◽  
Vol 37 (4) ◽  
pp. 703-704
Author(s):  
Donald Perlis

Ackermann's set theory [1], called here A, involves a schemawhere φ is an ∈-formula with free variables among y1, …, yn and w does not appear in φ. Variables are thought of as ranging over classes and V is intended as the class of all sets.S is a kind of comprehension principle, perhaps most simply motivated by the following idea: The familiar paradoxes seem to arise when the class CP of all P-sets is claimed to be a set, while there exists some P-object x not in CP such that x would have to be a set if CP were. Clearly this cannot happen if all P-objects are sets.Now, Levy [2] and Reinhardt [3] showed that A* (A with regularity) is in some sense equivalent to ZF. But the strong replacement axiom of Gödel-Bernays set theory intuitively ought to be a theorem of A* although in fact it is not (Levy's work shows this). Strong replacement can be formulated asThis lack of A* can be remedied by replacing S above bywhere ψ and φ are ∈-formulas and x is not in ψ and w is not in φ. ψv is ψ with quantifiers relativized to V, and y and z stand for y1, …, yn and z1, …, zm.


2010 ◽  
Vol 75 (3) ◽  
pp. 996-1006 ◽  
Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis

AbstractWe establish the following results:1. In ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC), for every set I and for every ordinal number α ≥ ω, the following statements are equivalent:(a) The Tychonoff product of ∣α∣ many non-empty finite discrete subsets of I is compact.(b) The union of ∣α∣ many non-empty finite subsets of I is well orderable.2. The statement: For every infinite set I, every closed subset of the Tychonoff product [0, 1]Iwhich consists offunctions with finite support is compact, is not provable in ZF set theory.3. The statement: For every set I, the principle of dependent choices relativised to I implies the Tychonoff product of countably many non-empty finite discrete subsets of I is compact, is not provable in ZF0 (i.e., ZF minus the Axiom of Regularity).4. The statement: For every set I, every ℵ0-sized family of non-empty finite subsets of I has a choice function implies the Tychonoff product of ℵ0many non-empty finite discrete subsets of I is compact, is not provable in ZF0.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 86 ◽  
Author(s):  
Dmitri Shakhmatov ◽  
Víctor Yañez

We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group G without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter p on the set N of natural numbers and every sequence ( U n ) of non-empty open subsets of G, one can choose a point x n ∈ U n for all n ∈ N in such a way that the resulting sequence ( x n ) has a p-limit in G; that is, { n ∈ N : x n ∈ V } ∈ p for every neighbourhood V of x in G. In particular, G is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group G above is not pseudo- ω -bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum ⨁ i ∈ I X i , where each space X i is either maximal or discrete, contains no infinite separable pseudocompact subsets.


1962 ◽  
Vol 20 ◽  
pp. 105-168 ◽  
Author(s):  
Katuzi Ono

The theory of mathematical objects, developed in this work, is a trial system intended to be a prototype of set theory. It concerns, with respect to the only one primitive notion “proto-membership”, with a field of mathematical objects which we shall hereafter simply call objects, it is a very simple system, because it assumes only one axiom scheme which is formally similar to the aussonderung axiom of set theory. We shall show that in our object theory we can construct a theory of sets which is stronger than the Zermelo set-theory [1] without the axiom of choice.


Sign in / Sign up

Export Citation Format

Share Document