Term models for weak set theories with a universal set

1987 ◽  
Vol 52 (2) ◽  
pp. 374-387 ◽  
Author(s):  
T. E. Forster

We shall be concerned here with weak axiomatic systems of set theory with a universal set. The language in which they are expressed is that of set theory—two primitive predicates, = and ϵ, and no function symbols (though some function symbols will be introduced by definitional abbreviation). All the theories will have stratified axioms only, and they will all have Ext (extensionality: (∀x)(∀y)(x = y· ↔ ·(∀z)(z ϵ x ↔ z ϵ y))). In fact, in addition to extensionality, they have only axioms saying that the universe is closed under certain set-theoretic operations, viz. all of the formand these will always include singleton, i.e., ι′x exists if x does (the iota notation for singleton, due to Russell and Whitehead, is used here to avoid confusion with {x: Φ}, set abstraction), and also x ∪ y, x ∩ y and − x (the complement of x). The system with these axioms is called NF2 in the literature (see [F]). The other axioms we consider will be those giving ⋃x, ⋂x, {y: y ⊆x} and {y: x ⊆ y}. We will frequently have occasion to bear in mind that 〈 V, ⊆ 〉 is a Boolean algebra in any theory extending NF2. There is no use of the axiom of choice at any point in this paper. Since the systems with which we will be concerned exhibit this feature of having, in addition to extensionality, only axioms stating that V is closed under certain operations, we will be very interested in terms of the theories in question. A T-term, for T such a theory, is a thing (with no free variables) built up from V or ∧ by means of the T-operations, which are of course the operations that the axioms of T say the universe is closed under.

1976 ◽  
Vol 41 (2) ◽  
pp. 465-466
Author(s):  
John Lake

The set theory AFC was introduced by Perlis in [2] and he noted that it both includes and is stronger than Ackermann's set theory. We shall give a relative consistency result for AFC.AFC is obtained from Ackermann's set theory (see [2]) by replacing Ackermann's set existence schema with the schema(where ϕ, ψ, are ∈-formulae, x is not in ψ, w is not in ϕ, y is y1, …, yn, z is z1, …, zm and all free variables are shown) and adding the axiom of choice for sets. Following [1], we say that λ is invisible in Rκ if λ < κ and we haveholding for every ∈-formula θ which has exactly two free variables and does not involve u or υ. The existence of a Ramsey cardinal implies the existence of cardinals λ and κ with λ invisible in Rκ, and Theorem 1.13 of [1] gives some further indications about the relative strength of the notion of invisibility.Theorem. If there are cardinals λ and κ with λ invisible in Rκ, then AFC is consistent.Proof. Suppose that λ is invisible in Rκ and we will show that 〈Rκ, Rλ, ∈〉 ⊧ AFC (Rλ being the interpretation of V, of course).


Author(s):  
John P. Burgess

the ‘universe’ of constructible sets was introduced by Kurt Gödel in order to prove the consistency of the axiom of choice (AC) and the continuum hypothesis (CH) with the basic (ZF) axioms of set theory. The hypothesis that all sets are constructible is the axiom of constructibility (V = L). Gödel showed that if ZF is consistent, then ZF + V = L is consistent, and that AC and CH are provable in ZF + V = L.


1978 ◽  
Vol 43 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Petr Štěpánek

We shall describe Boolean extensions of models of set theory with the axiom of choice in which cardinals are collapsed by mappings definable from parameters in the ground model. In particular, starting from the constructible universe, we get Boolean extensions in which constructible cardinals are collapsed by ordinal definable sets.Let be a transitive model of set theory with the axiom of choice. Definability of sets in the generic extensions of is closely related to the automorphisms of the corresponding Boolean algebra. In particular, if G is an -generic ultrafilter on a rigid complete Boolean algebra C, then every set in [G] is definable from parameters in . Hence if B is a complete Boolean algebra containing a set of forcing conditions to collapse some cardinals in , it suffices to construct a rigid complete Boolean algebra C, in which B is completely embedded. If G is as above, then [G] satisfies “every set is -definable” and the inner model [G ∩ B] contains the collapsing mapping determined by B. To complete the result, it is necessary to give some conditions under which every cardinal from [G ∩ B] remains a cardinal in [G].The absolutness is granted for every cardinal at least as large as the saturation of C. To keep the upper cardinals absolute, it often suffices to construct C with the same saturation as B. It was shown in [6] that this is always possible, namely, that every Boolean algebra can be completely embedded in a rigid complete Boolean algebra with the same saturation.


1942 ◽  
Vol 7 (4) ◽  
pp. 133-145 ◽  
Author(s):  
Paul Bernays

Our task in the treatment of general set theory will be to give a survey for the purpose of characterizing the different stages and the principal theorems with respect to their axiomatic requirements from the point of view of our system of axioms. The delimitation of “general set theory” which we have in view differs from that of Fraenkel's general set theory, and also from that of “standard logic” as understood by most logicians. It is adapted rather to the tendency of von Neumann's system of set theory—the von Neumann system having been the first in which the possibility appeared of separating the assumptions which are required for the conceptual formations from those which lead to the Cantor hierarchy of powers. Thus our intention is to obtain general set theory without use of the axioms V d, V c, VI.It will also be desirable to separate those proofs which can be made without the axiom of choice, and in doing this we shall have to use the axiom V*—i.e., the theorem of replacement taken as an axiom. From V*, as we saw in §4, we can immediately derive V a and V b as theorems, and also the theorem that a function whose domain is represented by a set is itself represented by a functional set; and on the other hand V* was found to be derivable from V a and V b in combination with the axiom of choice. (These statements on deducibility are of course all on the basis of the axioms I–III.)


1955 ◽  
Vol 20 (2) ◽  
pp. 140-140 ◽  
Author(s):  
Richard Montague

Mr. Shen Yuting, in this Journal, vol. 18, no. 2 (June, 1953), stated a new paradox of intuitive set-theory. This paradox involves what Mr. Yuting calls the class of all grounded classes, that is, the family of all classes a for which there is no infinite sequence b such that … ϵ bn ϵ … ϵ b2ϵb1 ϵ a.Now it is possible to state this paradox without employing any complex set-theoretical notions (like those of a natural number or an infinite sequence). For let a class x be called regular if and only if (k)(x ϵ k ⊃ (∃y)(y ϵ k · ~(∃z)(z ϵ k · z ϵ y))). Let Reg be the class of all regular classes. I shall show that Reg is neither regular nor non-regular.Suppose, on the one hand, that Reg is regular. Then Reg ϵ Reg. Now Reg ϵ ẑ(z = Reg). Therefore, since Reg is regular, there is a y such that y ϵ ẑ(z = Reg) · ~(∃z)(z ϵ z(z = Reg) · z ϵ y). Hence ~(∃z)(z ϵ ẑ(z = Reg) · z ϵ Reg). But there is a z (namely Reg) such that z ϵ ẑ(z = Reg) · z ϵ Reg.On the other hand, suppose that Reg is not regular. Then, for some k, Reg ϵ k · [1] (y)(y ϵ k ⊃ (∃z)(z ϵ k · z ϵ y)). It follows that, for some z, z ϵ k · z ϵ Reg. But this implies that (ϵy)(y ϵ k · ~(ϵw)(w ϵ k · w ϵ y)), which contradicts [1].It can easily be shown, with the aid of the axiom of choice, that the regular classes are just Mr. Yuting's grounded classes.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The link between the high-order metaphysics and abstractions, on the one hand, and choice in the foundation of set theory, on the other hand, can distinguish unambiguously the “good” principles of abstraction from the “bad” ones and thus resolve the “bad company problem” as to set theory. Thus it implies correspondingly a more precise definition of the relation between the axiom of choice and “all company” of axioms in set theory concerning directly or indirectly abstraction: the principle of abstraction, axiom of comprehension, axiom scheme of specification, axiom scheme of separation, subset axiom scheme, axiom scheme of replacement, axiom of unrestricted comprehension, axiom of extensionality, etc.


1991 ◽  
Vol 56 (2) ◽  
pp. 592-607 ◽  
Author(s):  
Mitchell Spector

AbstractWe generalize the ultrapower in a way suitable for choiceless set theory. Given an ultrafilter, forcing is used to construct an extended ultrapower of the universe, designed so that the fundamental theorem of ultrapowers holds even in the absence of the axiom of choice. If, in addition, we assume DC, then an extended ultrapower of the universe by a countably complete ultrafilter must be well-founded. As an application, we prove the Vopěnka-Hrbáček theorem from ZF + DC only (the proof of Vopěnka and Hrbáček used the full axiom of choice): if there exists a strongly compact cardinal, then the universe is not constructible from a set. The same method shows that, in L[2ω], there cannot exist a θ-compact cardinal less than θ (where θ is the least cardinal onto which the continuum cannot be mapped); a similar result can be proven for other models of the form L[A]. The result for L[2ω] is of particular interest in connection with the axiom of determinacy. The extended ultrapower construction of this paper is an improved version of the author's earlier pseudo-ultrapower method, making use of forcing rather than the omitting types theorem.


1997 ◽  
Vol 62 (4) ◽  
pp. 1265-1279 ◽  
Author(s):  
J. L. Bell

AbstractWe analyze Zorn's Lemma and some of its consequences for Boolean algebras in a constructive setting. We show that Zorn's Lemma is persistent in the sense that, if it holds in the underlying set theory, in a properly stated form it continues to hold in all intuitionistic type theories of a certain natural kind. (Observe that the axiom of choice cannot be persistent in this sense since it implies the law of excluded middle.) We also establish the persistence of some familiar results in the theory of (complete) Boolean algebras—notably, the proposition that every complete Boolean algebra is an absolute subretract. This (almost) resolves a question of Banaschewski and Bhutani as to whether the Sikorski extension theorem for Boolean algebras is persistent.


Author(s):  
Alexander R. Pruss

This is a mainly technical chapter concerning the causal embodiment of the Axiom of Choice from set theory. The Axiom of Choice powered a construction of an infinite fair lottery in Chapter 4 and a die-rolling strategy in Chapter 5. For those applications to work, there has to be a causally implementable (though perhaps not compatible with our laws of nature) way to implement the Axiom of Choice—and, for our purposes, it is ideal if that involves infinite causal histories, so the causal finitist can reject it. Such a construction is offered. Moreover, other paradoxes involving the Axiom of Choice are given, including two Dutch Book paradoxes connected with the Banach–Tarski paradox. Again, all this is argued to provide evidence for causal finitism.


Sign in / Sign up

Export Citation Format

Share Document