free ultrafilter
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Francisco Javier García-Pacheco ◽  
Ramazan Kama ◽  
María del Carmen Listán-García

AbstractThis paper is on general methods of convergence and summability. We first present the general method of convergence described by free filters of $\mathbb{N} $ N and study the space of convergence associated with the filter. We notice that $c(X)$ c ( X ) is always a space of convergence associated with a filter (the Frechet filter); that if X is finite dimensional, then $\ell _{\infty }(X)$ ℓ ∞ ( X ) is a space of convergence associated with any free ultrafilter of $\mathbb{N} $ N ; and that if X is not complete, then $\ell _{\infty }(X)$ ℓ ∞ ( X ) is never the space of convergence associated with any free filter of $\mathbb{N} $ N . Afterwards, we define a new general method of convergence inspired by the Banach limit convergence, that is, described through operators of norm 1 which are an extension of the limit operator. We prove that $\ell _{\infty }(X)$ ℓ ∞ ( X ) is always a space of convergence through a certain class of such operators; that if X is reflexive and 1-injective, then $c(X)$ c ( X ) is a space of convergence through a certain class of such operators; and that if X is not complete, then $c(X)$ c ( X ) is never the space of convergence through any class of such operators. In the meantime, we study the geometric structure of the set $\mathcal{HB}(\lim ):= \{T\in \mathcal{B} (\ell _{\infty }(X),X): T|_{c(X)}= \lim \text{ and }\|T\|=1\}$ HB ( lim ) : = { T ∈ B ( ℓ ∞ ( X ) , X ) : T | c ( X ) = lim  and  ∥ T ∥ = 1 } and prove that $\mathcal{HB}(\lim )$ HB ( lim ) is a face of $\mathsf{B} _{\mathcal{L}_{X}^{0}}$ B L X 0 if X has the Bade property, where $\mathcal{L}_{X}^{0}:= \{ T\in \mathcal{B} (\ell _{\infty }(X),X): c_{0}(X) \subseteq \ker (T) \} $ L X 0 : = { T ∈ B ( ℓ ∞ ( X ) , X ) : c 0 ( X ) ⊆ ker ( T ) } . Finally, we study the multipliers associated with series for the above methods of convergence.



Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 86 ◽  
Author(s):  
Dmitri Shakhmatov ◽  
Víctor Yañez

We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group G without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter p on the set N of natural numbers and every sequence ( U n ) of non-empty open subsets of G, one can choose a point x n ∈ U n for all n ∈ N in such a way that the resulting sequence ( x n ) has a p-limit in G; that is, { n ∈ N : x n ∈ V } ∈ p for every neighbourhood V of x in G. In particular, G is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group G above is not pseudo- ω -bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum ⨁ i ∈ I X i , where each space X i is either maximal or discrete, contains no infinite separable pseudocompact subsets.



2018 ◽  
Vol 83 (2) ◽  
pp. 551-571
Author(s):  
ELEFTHERIOS TACHTSIS

AbstractEllis’ Theorem (i.e., “every compact Hausdorff right topological semigroup has an idempotent element”) is known to be proved only under the assumption of the full Axiom of Choice (AC); AC is used in the proof in the disguise of Zorn’s Lemma.In this article, we prove that in ZF, Ellis’ Theorem follows from the Boolean Prime Ideal Theorem (BPI), and hence is strictly weaker than AC in ZF. In fact, we establish that BPI implies the formally stronger (than Ellis’ Theorem) statement “for every family ${\cal A} = \{ ({S_i},{ \cdot _i},{{\cal T}_i}):i \in I\}$ of nontrivial compact Hausdorff right topological semigroups, there exists a function f with domain I such that $f\left( i \right)$ is an idempotent of ${S_i}$, for all $i \in I$”, which in turn implies ACfin (i.e., AC for sets of nonempty finite sets).Furthermore, we prove that in ZFA, the Axiom of Multiple Choice (MC) implies Ellis’ Theorem for abelian semigroups (i.e., “every compact Hausdorff right topological abelian semigroup has an idempotent element”) and that the strictly weaker than MC (in ZFA) principle LW (i.e., “every linearly ordered set can be well-ordered”) implies Ellis’ Theorem for linearly orderable semigroups (i.e., “every compact Hausdorff right topological linearly orderable semigroup has an idempotent element”); thus the latter formally weaker versions of Ellis’ Theorem are strictly weaker than BPI in ZFA. Yet, it is shown that no choice is required in order to prove Ellis’ Theorem for well-orderable semigroups.We also show that each one of the (strictly weaker than AC) statements “the Tychonoff product $2^{\Cal R} $ is compact and Loeb” and $BPI_{\Cal R}$ (BPI for filters on ${\Cal R}$) implies “there exists a free idempotent ultrafilter on ω” (which in turn is not provable in ZF). Moreover, we prove that the latter statement does not imply $BP{I_\omega }$ (BPI for filters on ω) in ZF, hence it does not imply any of $AC_{\Cal R} $ (AC for sets of nonempty sets of reals) and $BPI_{\Cal R} $ in ZF, either.In addition, we prove that the statements “there exists a free ultrafilter on ω”, “there exists a free ultrafilter on ω which is not idempotent”, and “for every IP set $A \subseteq \omega$, there exists a free ultrafilter ${\cal F}$ on ω such that $A \in {\cal F}$” are pairwise equivalent in ZF.



2017 ◽  
Vol 121 (1) ◽  
pp. 111
Author(s):  
Jarno Talponen

In this note various geometric properties of a Banach space $\mathrm{X} $ are characterized by means of weaker corresponding geometric properties involving an ultrapower $\mathrm{X} ^\mathcal {U}$. The characterizations do not depend on the particular choice of the free ultrafilter $\mathcal {U}$ on $\mathbb{N}$. For example, a point $x\in \mathbf{S} _\mathrm{X} $ is an MLUR point if and only if $\jmath (x)$ (given by the canonical inclusion $\jmath \colon \mathrm{X} \to \mathrm{X} ^\mathcal {U}$) in $\mathbb{B} _{\mathrm{X} ^\mathcal {U}}$ is an extreme point; a point $x\in \mathbf{S} _\mathrm{X} $ is LUR if and only if $\jmath (x)$ is not contained in any non-degenerate line segment of $\mathbf{S} _{\mathrm{X} ^\mathcal {U}}$; a Banach space $\mathrm{X} $ is URED if and only if there are no $x, y \in \mathbf{S} _{\mathrm{X} ^\mathcal {U}}$, $x \neq y$, with $x-y \in \jmath (\mathrm{X} )$.



2013 ◽  
Vol 11 (1) ◽  
Author(s):  
Piotr Szuca

AbstractGiven a free ultrafilter p on ℕ we say that x ∈ [0, 1] is the p-limit point of a sequence (x n)n∈ℕ ⊂ [0, 1] (in symbols, x = p -limn∈ℕ x n) if for every neighbourhood V of x, {n ∈ ℕ: x n ∈ V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p: [0, 1] → [0, 1] is defined by f p(x) = p -limn∈ℕ f n(x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p. For a filter F we also define the ω F-limit set of f at x. We consider a question about continuity of the multivalued map x → ω fF(x). We point out some connections between the Baire class of f p and tame dynamical systems, and give some open problems.



2010 ◽  
Vol 21 (01) ◽  
pp. 117-131
Author(s):  
RICHARD D. BURSTEIN

Let M0 ⊂ M1 be a finite index infinite depth hyperfinite II 1 subfactor and ω a free ultrafilter of the natural numbers. We show that if this subfactor is constructed from a commuting square then the central sequence inclusion [Formula: see text] has infinite Pimsner–Popa index. We will also demonstrate this result for certain infinite depth hyperfinite subfactors coming from groups.



2006 ◽  
Vol 81 (3) ◽  
pp. 321-350 ◽  
Author(s):  
Taras Banakh ◽  
Peter Nickolas ◽  
Manuel Sanchis

AbstractTo each filter ℱ on ω, a certain linear subalgebra A(ℱ) of Rω, the countable product of lines, is assigned. This algebra is shown to have many interesting topological properties, depending on the properties of the filter ℱ. For example, if ℱ is a free ultrafilter, then A(ℱ) is a Baire subalgebra of ℱω for which the game OF introduced by Tkachenko is undetermined (this resolves a problem of Hernández, Robbie and Tkachenko); and if ℱ1 and ℱ2 are two free filters on ω that are not near coherent (such filters exist under Martin's Axiom), then A (ℱ1) and A(ℱ2) are two o-bounded and OF-undetermined subalgebras of ℱω whose product A(ℱ1) × A(ℱ2) is OF-determined and not o-bounded (this resolves a problem of Tkachenko). It is also shown that the statement that the product of two o-bounded subrings of ℱω is o-bounded is equivalent to the set-theoretic principle NCF (Near Coherence of Filters); this suggests that Tkachenko's question on the productivity of the class of o-bounded topological groups may be undecidable in ZFC.



Sign in / Sign up

Export Citation Format

Share Document