scholarly journals Explicit formulas for local factors in the Euler products for Eisenstein series

1989 ◽  
Vol 113 ◽  
pp. 37-87 ◽  
Author(s):  
Paul Feit

Our objective is to prove that certain Dirichlet series (in our variable q−s), which are defined by infinite sums, can be expressed as a product of an explicit rational function in q−s times an unknown polynomial M in q−s Moreover we show that M(q−s) is 1 if a simple condition is met. The Dirichlet series appear in the Euler products of Fourier coefficients for Eisenstein series. The series discussed below generalize the functions α0(N, q−s) used by Shimura in [12], and the theorem is an extension of Kitaoka’s result [5].

1994 ◽  
Vol 133 ◽  
pp. 177-187 ◽  
Author(s):  
Paul Feit

In [3], the author studied certain local integrals derived from Fourier coefficient computations on Eisenstein series. Members of a family of Dirichlet series were characterized as a product of an explicit term with a mysterious polynomial factor. In a recent letter to the author, Professor Shoyu Nagaoka asked specific questions concerning the polynomial factor. Several of these questions can be answered by the techniques in [3]. In Part I of that paper, the relevant term is described precisely; however, in Part II, the term is described as a mysterious, albeit finite, sum. The present paper complete [3] by recording what little is known of that sum.


2005 ◽  
Vol 179 ◽  
pp. 47-102 ◽  
Author(s):  
Jay Jorgenson ◽  
Cormac O’Sullivan

AbstractIn this article we derive analytic and Fourier aspects of a Kronecker limit formula for second-order Eisenstein series. Let Γ be any Fuchsian group of the first kind which acts on the hyperbolic upper half-space H such that the quotient Γ\H has finite volume yet is non-compact. Associated to each cusp of Γ\H, there is a classically studied first-order non-holomorphic Eisenstein series E(s, z) which is defined by a generalized Dirichlet series that converges for Re(s) > 1. The Eisenstein series E(s, z) admits a meromorphic continuation with a simple pole at s = 1. Classically, Kronecker’s limit formula is the study of the constant term 1 (z) in the Laurent expansion of E(s, z) at s = 1. A number of authors recently have studied what is known as the second-order Eisenstein series E*(s, z), which is formed by twisting the Dirichlet series that defines the series E(s, z) by periods of a given cusp form f. In the work we present here, we study an analogue of Kronecker’s limit formula in the setting of the second-order Eisenstein series E* (s, z), meaning we determine the constant term 2(z) in the Laurent expansion of E*(s, z) at its first pole, which is also at s = 1. To begin our investigation, we prove a bound for the Fourier coefficients associated to the first-order Kronecker limit function 1. We then define two families of convolution Dirichlet series, denoted by and with m ∈ ℕ, which are formed by using the Fourier coefficients of 1 and the weight two cusp form f. We prove that for all m, and admit a meromorphic continuation and are holomorphic at s = 1. Turning our attention to the second-order Kronecker limit function 2, we first express 2 as a solution to various differential equations. Then we obtain its complete Fourier expansion in terms of the cusp form f, the Fourier coefficients of the first-order Kronecker limit function 1, and special values (1) and (1) of the convolution Dirichlet series. Finally, we prove a bound for the special values (1) and (1) which then implies a bound for the Fourier coefficients of 2. Our analysis leads to certain natural questions concerning the holomorphic projection operator, and we conclude this paper by examining certain numerical examples and posing questions for future study.


2018 ◽  
Vol 30 (6) ◽  
pp. 1437-1459 ◽  
Author(s):  
Yoshinori Mizuno

Abstract We study a real analytic Jacobi–Eisenstein series of matrix index and deduce several arithmetically interesting properties. In particular, we prove the followings: (a) Its Fourier coefficients are proportional to the average values of the Eisenstein series on higher-dimensional hyperbolic space. (b) The associated Dirichlet series of two variables coincides with those of Siegel, Shintani, Peter and Ueno. This makes it possible to investigate the Dirichlet series by means of techniques from modular form.


Author(s):  
Johann Franke

AbstractBased on the new approach to modular forms presented in [6] that uses rational functions, we prove a dominated convergence theorem for certain modular forms in the Eisenstein space. It states that certain rearrangements of the Fourier series will converge very fast near the cusp $$\tau = 0$$ τ = 0 . As an application, we consider L-functions associated to products of Eisenstein series and present natural generalized Dirichlet series representations that converge in an expanded half plane.


2006 ◽  
Vol 122 (4) ◽  
pp. 349-393 ◽  
Author(s):  
Zhi-Hong Sun ◽  
Kenneth S. Williams

2018 ◽  
Vol 49 (2) ◽  
pp. 391-409 ◽  
Author(s):  
Eren Mehmet Kıral ◽  
Matthew P. Young

Author(s):  
Alex Cowan

We give explicit expressions for the Fourier coefficients of Eisenstein series twisted by Dirichlet characters and modular symbols on [Formula: see text] in the case where [Formula: see text] is prime and equal to the conductor of the Dirichlet character. We obtain these expressions by computing the spectral decomposition of automorphic functions closely related to these Eisenstein series. As an application, we then evaluate certain sums of modular symbols in a way which parallels past work of Goldfeld, O’Sullivan, Petridis, and Risager. In one case we find less cancelation in this sum than would be predicted by the common phenomenon of “square root cancelation”, while in another case we find more cancelation.


Sign in / Sign up

Export Citation Format

Share Document