infinite sums
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 0)



2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Jules Chouquet ◽  
Lionel Vaux Auclair

We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose a constraint on some paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction. Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfies our constraints. Interestingly, our nets are untyped: we only rely on the sequentiality of linear logic nets and the dynamics of cut elimination. The paths on which we impose bounds are the switching paths involved in the Danos--Regnier criterion for sequentiality. In order to accommodate multiplicative units and weakenings, our nets come equipped with jumps: each weakening node is connected to some other node. Our constraint can then be summed up as a bound on both the length of switching paths, and the number of weakenings that jump to a common node.



Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3255
Author(s):  
Alexander Apelblat ◽  
Juan Luis González-Santander

Integral Mittag-Leffler, Whittaker and Wright functions with integrands similar to those which already exist in mathematical literature are introduced for the first time. For particular values of parameters, they can be presented in closed-form. In most reported cases, these new integral functions are expressed as generalized hypergeometric functions but also in terms of elementary and special functions. The behavior of some of the new integral functions is presented in graphical form. By using the MATHEMATICA program to obtain infinite sums that define the Mittag-Leffler, Whittaker, and Wright functions and also their corresponding integral functions, these functions and many new Laplace transforms of them are also reported in the Appendices for integral and fractional values of parameters.



2021 ◽  
pp. 4006-4018
Author(s):  
Shaheed N. Huseen ◽  
Ali S. Tayih

In this paper, the series solutions of a non-linear delay integral equations are considered by a modified approach of homotopy analysis method (MAHAM). We split the function   into infinite sums. The outcomes of the illustrated examples are included to confirm the accuracy and efficiency of the MAHAM. The exact solution can be obtained using special values of the convergence parameter.



Author(s):  
David Jarossay

We define and apply a method to study the non-vanishing of [Formula: see text]-adic cyclotomic multiple zeta values. We prove the non-vanishing of certain cyclotomic multiple harmonic sums, and, via a formula proved in another paper, which expresses certain cyclotomic multiple harmonic sums as infinite sums of products of [Formula: see text]-adic cyclotomic multiple zeta values, this implies the non-vanishing of certain [Formula: see text]-adic cyclotomic multiple zeta values.



2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Daniele Dorigoni ◽  
Michael B. Green ◽  
Congkao Wen

Abstract The exact expressions for integrated maximal U(1)Y violating (MUV) n-point correlators in SU(N) $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory are determined. The analysis generalises previous results on the integrated correlator of four superconformal primaries and is based on supersymmetric localisation. The integrated correlators are functions of N and τ = θ/(2π) + 4πi/$$ {g}_{YM}^2 $$ g YM 2 , and are expressed as two-dimensional lattice sums that are modular forms with holomorphic and anti-holomorphic weights (w, −w) where w = n − 4. The correlators satisfy Laplace-difference equations that relate the SU(N+1), SU(N) and SU(N−1) expressions and generalise the equations previously found in the w = 0 case. The correlators can be expressed as infinite sums of Eisenstein modular forms of weight (w, −w). For any fixed value of N the perturbation expansion of this correlator is found to start at order ($$ {g}_{YM}^2 $$ g YM 2 N)w. The contributions of Yang-Mills instantons of charge k > 0 are of the form qkf(gYM), where q = e2πiτ and f(gYM) = O($$ {g}_{YM}^{-2w} $$ g YM − 2 w ) when $$ {g}_{YM}^2 $$ g YM 2 ≪ 1. Anti-instanton contributions have charge k < 0 and are of the form $$ {\overline{q}}^{\left|k\right|}\hat{f}\left({g}_{YM}\right) $$ q ¯ k f ̂ g YM , where $$ \hat{f}\left({g}_{YM}\right)=O\left({g}_{YM}^{2w}\right) $$ f ̂ g YM = O g YM 2 w when $$ {g}_{YM}^2 $$ g YM 2 ≪ 1. Properties of the large-N expansion are in agreement with expectations based on the low energy expansion of flat-space type IIB superstring amplitudes. We also comment on the identification of n-point free-field MUV correlators with the integrands of (n − 4)-loop perturbative contributions to the four-point correlator. In particular, we emphasise the important rôle of SL(2, ℤ)-covariance in the construction.



Author(s):  
Puneet Pasricha ◽  
Anubha Goel ◽  
Song-Ping Zhu

In this article, we derive a closed-form pricing formula for catastrophe equity put options under a stochastic interest rate framework. A distinguishing feature of the proposed solution is its simplified form in contrast to several recently published formulae that require evaluating several layers of infinite sums of $n$ -fold convoluted distribution functions. As an application of the proposed formula, we consider two different frameworks and obtain the closed-form formula for the joint characteristic function of the asset price and the losses, which is the only required ingredient in our pricing formula. The prices obtained by the newly derived formula are compared with those obtained using Monte-Carlo simulations to show the accuracy of our formula.



Author(s):  
Robert Reynolds ◽  
Allan Stauffer

We present a method using contour integration to derive definite integrals and their associated infinite sums which can be expressed as a special function. We give a proof of the basic equation and some examples of the method. The advantage of using special functions is their analytic continuation which widens the range of the parameters of the definite integral over which the formula is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function. In various cases these generalizations evaluate to known mathematical constants such as Catalan’s constant and π



Author(s):  
Fernando Albiac ◽  
José L. Ansorena ◽  
Marek Cúth ◽  
Michal Doucha
Keyword(s):  


2021 ◽  
Vol 7 (1) ◽  
pp. 334-348
Author(s):  
Fan Yang ◽  
◽  
Yang Li

<abstract><p>In this paper, the infinite sums of reciprocals and the partial sums derived from Chebyshev polynomials are studied. For the infinite sums of reciprocals, we apply the floor function to the reciprocals of these sums to obtain some new and interesting identities involving the Chebyshev polynomials. Simultaneously, we get several identities about the partial sums of Chebyshev polynomials by the relation of two types of Chebyshev polynomials.</p></abstract>



Sign in / Sign up

Export Citation Format

Share Document