scholarly journals A generalization of Hubert’s theorem 94

1991 ◽  
Vol 121 ◽  
pp. 161-169 ◽  
Author(s):  
Hiroshi Suzuki

In this paper we shall prove the following theorem conjectured by Miyake in [3] (see also Jaulent [2]).THEOREM. Let k be a finite algebraic number field and K be an unramified abelian extension of k, then all ideals belonging to at least [K: k] ideal classes of k become principal in K.Since the capitulation homomorphism is equivalently translated to a group-transfer of the galois group (see Miyake [3]), it is enough to prove the following group-theoretical verison:

1957 ◽  
Vol 12 ◽  
pp. 177-189 ◽  
Author(s):  
Tomio Kubota

The aim of the present work is to determine the Galois group of the maximal abelian extension ΩA over an algebraic number field Ω of finite degree, which we fix once for all.Let Z be a continuous character of the Galois group of ΩA/Ω. Then, by class field theory, the character Z is also regarded as a character of the idele group of Ω. We call such Z character of Ω. For our purpose, it suffices to determine the group Xl of the characters of Ω whose orders are powers of a prime number l.


1984 ◽  
Vol 93 ◽  
pp. 61-69 ◽  
Author(s):  
Yoshiomi Furuta

Let K be a finite Galois extension of an algebraic number field k with G = Gal (K/k), and M be a Galois extension of k containing K. We denote by resp. the genus field resp. the central class field of K with respect to M/k. By definition, the field is the composite of K and the maximal abelian extension over k contained in M. The field is the maximal Galois extension of k contained in M satisfying the condition that the Galois group over K is contained in the center of that over k. Then it is well known that Gal is isomorphic to a factor group of the Schur multiplicator H-3(G, Z), and is isomorphic to H-3(G, Z) when M is sufficiently large. In this case we call M abundant for K/k (See Heider [3, § 4] and Miyake [6, Theorem 5]).


1961 ◽  
Vol 19 ◽  
pp. 169-187 ◽  
Author(s):  
Yoshiomi Furuta

Let k be an algebraic number field of finite degree, A the maximal abelian extension over k, and M a meta-abelian field over h of finite degree, that is, M/k be a normal extension over k of finite degree with an abelian group as commutator group of its Galois group.


1960 ◽  
Vol 16 ◽  
pp. 83-90 ◽  
Author(s):  
Hideo Yokoi

1. Introduction. It is known that there are only three rationally inequivalent classes of indecomposable integral representations of a cyclic group of prime order l. The representations of these classes are: (I) identical representation,(II) rationally irreducible representation of degree l – 1,(III) indecomposable representation consisting of one identical representation and one rationally irreducible representation of degree l-1 (F. E. Diederichsen [1], I. Reiner [2]).


2010 ◽  
Vol 06 (06) ◽  
pp. 1273-1291
Author(s):  
BEHAILU MAMMO

Let G = Cℓ × Cℓ denote the product of two cyclic groups of prime order ℓ, and let k be an algebraic number field. Let N(k, G, m) denote the number of abelian extensions K of k with Galois group G(K/k) isomorphic to G, and the relative discriminant 𝒟(K/k) of norm equal to m. In this paper, we derive an asymptotic formula for ∑m≤XN(k, G; m). This extends the result previously obtained by Datskovsky and Mammo.


1984 ◽  
Vol 93 ◽  
pp. 133-148 ◽  
Author(s):  
Katsuya Miyake

Let k be an algebraic number field of finite degree, and K a finite Galois extension of k. A central extension L of K/k is an algebraic number field which contains K and is normal over k, and whose Galois group over K is contained in the center of the Galois group Gal(L/k). We denote the maximal abelian extensions of k and K in the algebraic closure of k by kab and Kab respectively, and the maximal central extension of K/k by MCK/k. Then we have Kab⊃MCK/k⊃kab·K.


1978 ◽  
Vol 70 ◽  
pp. 183-202 ◽  
Author(s):  
Hiroo Miki

Let k be a finite algebraic number field and let ℓ be a fixed odd prime number. In this paper, we shall prove the equivalence of certain rather strong conditions on the following four things (1) ~ (4), respectively : (1) the class number of the cyclotomic Zℓ-extension of k,(2) the Galois group of the maximal abelian ℓ-extension of k with given ramification,(3) the number of independent cyclic extensions of k of degree ℓ, which can be extended to finite cyclic extensions of k of any ℓ-power degree, and(4) a certain subgroup Bk(m, S) (cf. § 2) of k×/k×)ℓm for any natural number m (see the main theorem in §3).


1967 ◽  
Vol 29 ◽  
pp. 281-285 ◽  
Author(s):  
Yoshiomi Furuta

Let k be an algebraic number field and K be its normal extension of finite degree. Then the genus field K* of K over k is defined as the maximal unramified extension of K which is obtained from K by composing an abelian extension over k2). We call the degree (K*: K) the genus number of K over k.


Sign in / Sign up

Export Citation Format

Share Document