ON THE DENSITY OF DISCRIMINANTS OF ABELIAN EXTENSIONS OF A NUMBER FIELD

2010 ◽  
Vol 06 (06) ◽  
pp. 1273-1291
Author(s):  
BEHAILU MAMMO

Let G = Cℓ × Cℓ denote the product of two cyclic groups of prime order ℓ, and let k be an algebraic number field. Let N(k, G, m) denote the number of abelian extensions K of k with Galois group G(K/k) isomorphic to G, and the relative discriminant 𝒟(K/k) of norm equal to m. In this paper, we derive an asymptotic formula for ∑m≤XN(k, G; m). This extends the result previously obtained by Datskovsky and Mammo.

1960 ◽  
Vol 16 ◽  
pp. 83-90 ◽  
Author(s):  
Hideo Yokoi

1. Introduction. It is known that there are only three rationally inequivalent classes of indecomposable integral representations of a cyclic group of prime order l. The representations of these classes are: (I) identical representation,(II) rationally irreducible representation of degree l – 1,(III) indecomposable representation consisting of one identical representation and one rationally irreducible representation of degree l-1 (F. E. Diederichsen [1], I. Reiner [2]).


1961 ◽  
Vol 19 ◽  
pp. 169-187 ◽  
Author(s):  
Yoshiomi Furuta

Let k be an algebraic number field of finite degree, A the maximal abelian extension over k, and M a meta-abelian field over h of finite degree, that is, M/k be a normal extension over k of finite degree with an abelian group as commutator group of its Galois group.


1957 ◽  
Vol 12 ◽  
pp. 177-189 ◽  
Author(s):  
Tomio Kubota

The aim of the present work is to determine the Galois group of the maximal abelian extension ΩA over an algebraic number field Ω of finite degree, which we fix once for all.Let Z be a continuous character of the Galois group of ΩA/Ω. Then, by class field theory, the character Z is also regarded as a character of the idele group of Ω. We call such Z character of Ω. For our purpose, it suffices to determine the group Xl of the characters of Ω whose orders are powers of a prime number l.


1966 ◽  
Vol 27 (1) ◽  
pp. 121-132
Author(s):  
Yoshiomi Furuta

Let k be an algebraic number field of finite degree, K be its normal extension of degree n, and ŝ be the set of those primes of K which have degree 1. Using this set s instead of the set of all primes of K, we define an s-restricted idèle of K by the same way as ordinary idèles. It is known by Bauer that the normal extension of an algebraic number field is determined by the set of all primes of the ground field which are decomposed completely in the extension field. This suggests that if we treat abelian extensions over K which are normal over k, the class field theory is expressed by means of the ŝ-restricted idèles (theorem 2). When K = k, ŝ is the set of all primes of K, and we have the ordinary class field theory.


1991 ◽  
Vol 121 ◽  
pp. 161-169 ◽  
Author(s):  
Hiroshi Suzuki

In this paper we shall prove the following theorem conjectured by Miyake in [3] (see also Jaulent [2]).THEOREM. Let k be a finite algebraic number field and K be an unramified abelian extension of k, then all ideals belonging to at least [K: k] ideal classes of k become principal in K.Since the capitulation homomorphism is equivalently translated to a group-transfer of the galois group (see Miyake [3]), it is enough to prove the following group-theoretical verison:


1984 ◽  
Vol 93 ◽  
pp. 133-148 ◽  
Author(s):  
Katsuya Miyake

Let k be an algebraic number field of finite degree, and K a finite Galois extension of k. A central extension L of K/k is an algebraic number field which contains K and is normal over k, and whose Galois group over K is contained in the center of the Galois group Gal(L/k). We denote the maximal abelian extensions of k and K in the algebraic closure of k by kab and Kab respectively, and the maximal central extension of K/k by MCK/k. Then we have Kab⊃MCK/k⊃kab·K.


1989 ◽  
Vol 115 ◽  
pp. 151-164 ◽  
Author(s):  
Norikata Nakagoshi

It is interesting to know what kinds of primes are the factors of the class number of an algebraic number field, and especially to find ones being prime to the degree. About this matter it is desirable to construct the unramified Abelian extensions plainly. In this paper we shall show some of them for the prime cyclotomic number field and its quadratic extensions using the units of subfields.


1984 ◽  
Vol 93 ◽  
pp. 61-69 ◽  
Author(s):  
Yoshiomi Furuta

Let K be a finite Galois extension of an algebraic number field k with G = Gal (K/k), and M be a Galois extension of k containing K. We denote by resp. the genus field resp. the central class field of K with respect to M/k. By definition, the field is the composite of K and the maximal abelian extension over k contained in M. The field is the maximal Galois extension of k contained in M satisfying the condition that the Galois group over K is contained in the center of that over k. Then it is well known that Gal is isomorphic to a factor group of the Schur multiplicator H-3(G, Z), and is isomorphic to H-3(G, Z) when M is sufficiently large. In this case we call M abundant for K/k (See Heider [3, § 4] and Miyake [6, Theorem 5]).


1978 ◽  
Vol 70 ◽  
pp. 183-202 ◽  
Author(s):  
Hiroo Miki

Let k be a finite algebraic number field and let ℓ be a fixed odd prime number. In this paper, we shall prove the equivalence of certain rather strong conditions on the following four things (1) ~ (4), respectively : (1) the class number of the cyclotomic Zℓ-extension of k,(2) the Galois group of the maximal abelian ℓ-extension of k with given ramification,(3) the number of independent cyclic extensions of k of degree ℓ, which can be extended to finite cyclic extensions of k of any ℓ-power degree, and(4) a certain subgroup Bk(m, S) (cf. § 2) of k×/k×)ℓm for any natural number m (see the main theorem in §3).


Sign in / Sign up

Export Citation Format

Share Document