scholarly journals Zeta functions of prehomogeneous affine spaces

1993 ◽  
Vol 132 ◽  
pp. 91-114
Author(s):  
Atsushi Murase ◽  
Takashi Sugano

Let ρ be an algebraic homomorphism of a linear algebraic group G into the affine transformation group Aff(V) of a finite dimensional vector space V. We say that a triplet (G, V, ρ) is a prehomogeneous affine space, if there exists a proper algebraic subset S of V such that V — S is a single ρ(G)-orbit. In particular, (G, V, ρ) is a usual prehomogeneous vector space (PV, briefly) in the case where ρ(G) ⊂ GL(V) (cf. [5], [7]). In the preceding paper [2], we defined zeta functions associated with certain prehomogeneous affine spaces and proved their analytic continuation and functional equations.

1977 ◽  
Vol 65 ◽  
pp. 1-155 ◽  
Author(s):  
M. Sato ◽  
T. Kimura

LetGbe a connected linear algebraic group, andpa rational representation ofGon a finite-dimensional vector spaceV, all defined over the complex number fieldC.We call such a triplet (G, p, V) aprehomogeneous vector spaceifVhas a Zariski-denseG-orbit. The main purpose of this paper is to classify all prehomogeneous vector spaces whenpis irreducible, and to investigate their relative invariants and the regularity.


1985 ◽  
Vol 98 ◽  
pp. 139-156 ◽  
Author(s):  
Yasuo Teranishi

Let G be a connected linear algebraic group, p a rational representation of G on a finite-dimensional vector space V, all defined over C.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1970 ◽  
Vol 22 (2) ◽  
pp. 363-371 ◽  
Author(s):  
K. Singh

In this paper, we shall construct a vector space, called the (G, σ) space, which generalizes the tensor space, the Grassman space, and the symmetric space. Then we shall determine a necessary and sufficient condition that the (G, σ) product of the vectors x1, x2, …, xn is zero.1. Let G be a permutation group on I = {1, 2, …, n} and F, an arbitrary field. Let σ be a linear character of G, i.e., σ is a homomorphism of G into the multiplicative group F* of F.For each i ∈ I, let Vi be a finite-dimensional vector space over F. Consider the Cartesian product W = V1 × V2 × … × Vn.1.1. Definition. W is called a G-set if and only if Vi = Vg(i) for all i ∊ I, and for all g ∊ G.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


Sign in / Sign up

Export Citation Format

Share Document