scholarly journals Classical solutions of the third Painlevé equation

1995 ◽  
Vol 139 ◽  
pp. 37-65 ◽  
Author(s):  
Yoshihiro Murata

The big problem “Do Painlevé equations define new functions?”, what is called the problem of irreducibilities of Painlevé equations, was essentially solved by H. Umemura [16], [17] and K. Nishioka [9].

2000 ◽  
Vol 159 ◽  
pp. 87-111 ◽  
Author(s):  
Makoto Taneda

We study the Yablonskii-Vorob’ev polynomial associated with the second Painlevé equation. To study other special polynomials (Okamoto polynomials, Umemura polynomials) associated with the Painlevé equations, our purely algebraic approach is useful.


Author(s):  
Nalini Joshi ◽  
Yang Shi

In this paper, we present a new method of deducing infinite sequences of exact solutions of q -discrete Painlevé equations by using their associated linear problems. The specific equation we consider in this paper is a q -discrete version of the second Painlevé equation ( q -P II ) with affine Weyl group symmetry of type ( A 2 + A 1 ) (1) . We show, for the first time, how to use the q -discrete linear problem associated with q -P II to find an infinite sequence of exact rational solutions and also show how to find their representation as determinants by using the linear problem. The method, while demonstrated for q -P II here, is also applicable to other discrete Painlevé equations.


2012 ◽  
Vol 22 (09) ◽  
pp. 1250211
Author(s):  
ATHANASSIOS S. FOKAS ◽  
DI YANG

One of the authors recently introduced the concept of conjugate Hamiltonian systems: the solution of the equation h = H(p, q, t), where H is a given Hamiltonian containing t explicitly, yields the function t = T(p, q, h), which defines a new Hamiltonian system with Hamiltonian T and independent variable h. By employing this construction and by using the fact that the classical Painlevé equations are Hamiltonian systems, it is straightforward to associate with each Painlevé equation two new integrable ODEs. Here, we investigate the conjugate Painlevé II equations. In particular, for these novel integrable ODEs, we present a Lax pair formulation, as well as a class of implicit solutions. We also construct conjugate equations associated with Painlevé I and Painlevé IV equations.


1998 ◽  
Vol 151 ◽  
pp. 1-24 ◽  
Author(s):  
Hiroshi Umemura ◽  
Humihiko Watanabe

Abstract.We classify transcendental classical solutions of the third Painlevé equation. This result combined with the list of algebraic solutions in [11] gives a complete table of classical solutions of the third Painlevé equation.


2019 ◽  
Vol 2020 (24) ◽  
pp. 9797-9843 ◽  
Author(s):  
Anton Dzhamay ◽  
Alisa Knizel

Abstract The goal of this paper is to investigate the missing part of the story about the relationship between the orthogonal polynomial ensembles and Painlevé equations. Namely, we consider the $q$-Racah polynomial ensemble and show that the one-interval gap probabilities in this case can be expressed through a solution of the discrete $q$-P$\left (E_7^{(1)}/A_{1}^{(1)}\right )$ equation. Our approach also gives a new Lax pair for this equation. This Lax pair has an interesting additional involutive symmetry structure.


1997 ◽  
Vol 148 ◽  
pp. 151-198 ◽  
Author(s):  
Hiroshi Umemura ◽  
Humihiko Watanabe

AbstractA rigorous proof of the irreducibility of the second and fourth Painlevé equations is given by applying Umemura’s theory on algebraic differential equations ([26], [27], [28]) to the two equations. The proof consists of two parts: to determine a necessary condition for the parameters of the existence of principal ideals invariant under the Hamiltonian vector field; to determine the principal invariant ideals for a parameter where the principal invariant ideals exist. Our method is released from complicated calculation, and applicable to the proof of the irreducibility of the third, fifth and sixth equation (e.g. [32]).


Sign in / Sign up

Export Citation Format

Share Document