scholarly journals Radon-Nikodym Densities between Harmonic Measures on the Ideal Boundary of an Open Riemann Surface

1966 ◽  
Vol 27 (1) ◽  
pp. 71-76
Author(s):  
Mitsuru Nakai

Resolutive compactification and harmonic measures. Let R be an open Riemann surface. A compact Hausdorff space R* containing R as its dense subspace is called a compactification of R and the compact set Δ = R* -R is called an ideal boundary of R. Hereafter we always assume that R does not belong to the class OG. Given a real-valued function f on Δ, we denote by the totality of lower bounded superharmonic (resp. upper bounded subharmonic) functions sonis satisfying

1970 ◽  
Vol 38 ◽  
pp. 85-90 ◽  
Author(s):  
Mitsuru Nakai

Sario’s theory of principal functions fully discussed in his research monograph [3] with Rodin stems from the principal function problem which is to find a harmonic function p on an open Riemann surface R imitating the ideal boundary behavior of the given harmonic function s in a neighborhood A of the ideal boundary δ of R.


1978 ◽  
Vol 70 ◽  
pp. 41-45
Author(s):  
Shigeo Segawa

Consider an open Riemann surface R and a single-valued meromorphic function w = f(p) defined on R. A value w0 in the extended complex plane is said to be a cluster value for w = f(p) if there exists a sequence {pn } in R accumulating at the ideal boundary of R such that


1978 ◽  
Vol 21 (1) ◽  
pp. 61-71
Author(s):  
Bruce Lund

AbstractLet R be a finite open Riemann surface with analytic boundary Γ. Set and define is analytic on R}. Conditions are given on a function algebra A on a compact Hausdorff space X which imply that A is isomorphic to a subalgebra of A(R) of finite codimension.


1956 ◽  
Vol 32 (6) ◽  
pp. 409-411 ◽  
Author(s):  
Shin'ichi Mori ◽  
Minoru Ota

1993 ◽  
Vol 132 ◽  
pp. 131-139
Author(s):  
Michihiko Kawamura ◽  
Shigeo Segawa

Consider an end Ω in the sense of Heins (cf. Heins [3]): Ω is a relatively non-compact subregion of an open Riemann surface such that the relative boundary ∂Ω consists of finitely many analytic Jordan closed curves, there exist no non-constant bounded harmonic functions with vanishing boundary values on ∂Ω and Ω has a single ideal boundary component. A density P = P(z)dxdy (z = x + iy) is a 2-form on Ω∩∂Ω with nonnegative locally Holder continuous coefficient P(z).


1974 ◽  
Vol 26 (4) ◽  
pp. 920-930 ◽  
Author(s):  
R. Grant Woods

Let X be a locally compact Hausdorff topological space. A compactification of X is a compact Hausdorff space which contains X as a dense subspace. Two compactifications αX and γX of X are equivalent if there is a homeomorphism from αX onto γX that fixes X pointwise. We shall identify equivalent compactifications of a given space. If is a family of compactifications of X, we can partially order by saying that αX ≦ γX if there is a continuous map from γX onto αX that fixes X pointwise.


1979 ◽  
Vol 31 (5) ◽  
pp. 1072-1076
Author(s):  
Mikio Niimura

The classical uniqueness theorems of Riesz and Koebe show an important characteristic of boundary behavior of analytic functions in the unit disc. The purpose of this note is to discuss these uniqueness theorems on hyperbolic Riemann surfaces. It will be necessary to give additional hypotheses because Riemann surfaces can be very nasty. So, in this note the Wiener compactification will be used as ideal boundary of Riemann surfaces. The Theorem, Corollaries 1, 2 and 3 are of Riesz type, Riesz-Nevanlinna type, Koebe type and Koebe-Nevanlinna type respectively. Corollaries 4 and 5 are general forms of Corollaries 2 and 3 respectively.Let f be a mapping from an open Riemann surface R into a Riemann surface R′.


2012 ◽  
Vol 88 (1) ◽  
pp. 12-16 ◽  
Author(s):  
M. R. KOUSHESH

AbstractA space $Y$ is called an extension of a space $X$ if $Y$ contains $X$ as a dense subspace. An extension $Y$ of $X$ is called a one-point extension of $X$ if $Y\setminus X$ is a singleton. P. Alexandroff proved that any locally compact non-compact Hausdorff space $X$ has a one-point compact Hausdorff extension, called the one-point compactification of $X$. Motivated by this, Mrówka and Tsai [‘On local topological properties. II’, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.19 (1971), 1035–1040] posed the following more general question: For what pairs of topological properties ${\mathscr P}$ and ${\mathscr Q}$ does a locally-${\mathscr P}$ space $X$ having ${\mathscr Q}$ possess a one-point extension having both ${\mathscr P}$ and ${\mathscr Q}$? Here, we provide an answer to this old question.


1998 ◽  
Vol 41 (3) ◽  
pp. 298-305
Author(s):  
M. T. Jahandideh

AbstractIt is known that a semigroup of quasinilpotent integral operators, with positive lower semicontinuous kernels, on L2(X, μ), where X is a locally compact Hausdorff-Lindelöf space and μ is a σ-finite regular Borel measure on X, is triangularizable. In this article we use the Banach lattice version of triangularizability to establish the ideal-triangularizability of a semigroup of positive quasinilpotent integral operators on C(K) where K is a compact Hausdorff space.


Sign in / Sign up

Export Citation Format

Share Document