scholarly journals Functions meromorphic on some Riemann surfaces

1978 ◽  
Vol 70 ◽  
pp. 41-45
Author(s):  
Shigeo Segawa

Consider an open Riemann surface R and a single-valued meromorphic function w = f(p) defined on R. A value w0 in the extended complex plane is said to be a cluster value for w = f(p) if there exists a sequence {pn } in R accumulating at the ideal boundary of R such that

1978 ◽  
Vol 70 ◽  
pp. 1-6 ◽  
Author(s):  
Shigeo Segawa

Consider a single-valued meromorphic function w = f(p) defined on an open Riemann surface R with an ideal boundary β. In [1], Collingwood and Cartwright introduced the global cluster set for a function meromorphic on the unit disk. Generalizing the definition of global cluster sets to our present setting, we define the global cluster set for w = f(p) as follows;A value w in the extended complex plane is called a cluster value at β if there exists a sequence in R converging to β such that


1979 ◽  
Vol 31 (5) ◽  
pp. 1072-1076
Author(s):  
Mikio Niimura

The classical uniqueness theorems of Riesz and Koebe show an important characteristic of boundary behavior of analytic functions in the unit disc. The purpose of this note is to discuss these uniqueness theorems on hyperbolic Riemann surfaces. It will be necessary to give additional hypotheses because Riemann surfaces can be very nasty. So, in this note the Wiener compactification will be used as ideal boundary of Riemann surfaces. The Theorem, Corollaries 1, 2 and 3 are of Riesz type, Riesz-Nevanlinna type, Koebe type and Koebe-Nevanlinna type respectively. Corollaries 4 and 5 are general forms of Corollaries 2 and 3 respectively.Let f be a mapping from an open Riemann surface R into a Riemann surface R′.


1966 ◽  
Vol 27 (1) ◽  
pp. 71-76
Author(s):  
Mitsuru Nakai

Resolutive compactification and harmonic measures. Let R be an open Riemann surface. A compact Hausdorff space R* containing R as its dense subspace is called a compactification of R and the compact set Δ = R* -R is called an ideal boundary of R. Hereafter we always assume that R does not belong to the class OG. Given a real-valued function f on Δ, we denote by the totality of lower bounded superharmonic (resp. upper bounded subharmonic) functions sonis satisfying


1970 ◽  
Vol 38 ◽  
pp. 85-90 ◽  
Author(s):  
Mitsuru Nakai

Sario’s theory of principal functions fully discussed in his research monograph [3] with Rodin stems from the principal function problem which is to find a harmonic function p on an open Riemann surface R imitating the ideal boundary behavior of the given harmonic function s in a neighborhood A of the ideal boundary δ of R.


1956 ◽  
Vol 32 (6) ◽  
pp. 409-411 ◽  
Author(s):  
Shin'ichi Mori ◽  
Minoru Ota

1963 ◽  
Vol 22 ◽  
pp. 211-217 ◽  
Author(s):  
Nobushige Toda ◽  
Kikuji Matsumoto

Some years ago, Kuramochi gave in his paper [5] a very interesting theorem, which can be stated as follows.THEOREM OF KURAMOCHI. Let R be a hyperbolic Riemann surface of the class Of OHR(OHD,resp.). Then, for any compact subset K of R such that R—K is connected, R—K as an open Riemann surface belongs to the class 0AB(OAD resp.).


1994 ◽  
Vol 09 (03) ◽  
pp. 313-325 ◽  
Author(s):  
FRANCO FERRARI

In this paper we study a class of theories of free particles on the complex plane satisfying a non-Abelian statistics. This kind of particles are generalizations of the anyons and are sometimes called plectons. The peculiarity of these theories is that they are associated to free conformal field theories defined on Riemann surfaces with a discrete and non-Abelian group of authomorphisms Dm. More explicitly, the plectons appear here as “induced vertex operators” that simulate, on the complex plane, the nontrivial topology of the Riemann surface. In order to express the local exchange algebra of the particles, one is led to introduce an R matrix satisfying a multiparameter generalization of the usual Yang-Baxter equations. It is interesting that analogous generalizations have already been investigated in connection with integrable models, in which the spectral parameter takes its values on a Riemann surface that is in many respects similar to the Riemann surfaces we are studying here. The explicit form of the R matrices mentioned above can be also used to define a multiparameter version of the quantum complex hyperplane.


1993 ◽  
Vol 132 ◽  
pp. 131-139
Author(s):  
Michihiko Kawamura ◽  
Shigeo Segawa

Consider an end Ω in the sense of Heins (cf. Heins [3]): Ω is a relatively non-compact subregion of an open Riemann surface such that the relative boundary ∂Ω consists of finitely many analytic Jordan closed curves, there exist no non-constant bounded harmonic functions with vanishing boundary values on ∂Ω and Ω has a single ideal boundary component. A density P = P(z)dxdy (z = x + iy) is a 2-form on Ω∩∂Ω with nonnegative locally Holder continuous coefficient P(z).


1955 ◽  
Vol 9 ◽  
pp. 17-20 ◽  
Author(s):  
Maurice Heins

It is well-known that the conformal equivalence of a compact simply-connected Riemann surface to the extended plane is readily established once it is shown that given a local uniformizer t(p) which carries a given point p0 of the surface into 0, there exists a function u harmonic on the surface save at p0 which admits near p0 a representation of the form(α complex 0; h harmonic at p0). For the monodromy theorem then implies the existence of a meromorphic function on the surface whose real part is u. Such a meromorphic function has a simple pole at p0 and elsewhere is analytic. It defines a univalent conformal map of the surface onto the extended plane.


Sign in / Sign up

Export Citation Format

Share Document