scholarly journals Groups with a (B, N)–pair and locally transitive graphs

1979 ◽  
Vol 74 ◽  
pp. 1-21 ◽  
Author(s):  
Richard Weiss

Let Γ be an undirected graph and G a subgroup of aut (Γ). We denote by ∂(x, y) the distance between two vertices x and y, by E(Γ) the edge set of Γ, by V(Γ) the vertex set of Γ, by Γ(x) the set of neighbors of the vertex x and by G(x)Γ(x) the permutation group induced by the stabilizer G(x) on Γ(x).

1995 ◽  
Vol 118 (2) ◽  
pp. 191-206 ◽  
Author(s):  
V. I. Trofimov ◽  
R. M. Weiss

Let Γ be an undirected graph, V(Γ) the vertex set of Γ and G a subgroup of aut(Γ). For each vertex x ↦ V(Γ), let Γx denote the set of vertices adjacent to x in Γ and the permutation group induced on Γx. by the stabilizer Gx. For each i ≥ 1, will denote the pointwise stabilizer in Gx of the set of vertices at distance at most i from x in Γ. Letfor each i ≥ 1 and any set of vertices x, y, …, z of Γ. An s-path (or s-arc) is an (s + 1)-tuple (x0, x1, … xs) of vertices such that xi ↦ Γxi–1 for 1 ≤ i ≤ s and xi ╪ xi–2 for 2 ≤ i ≤ s.


10.37236/7294 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Mark E. Watkins

A graphical Frobenius representation (GFR) of a Frobenius (permutation) group $G$ is a graph $\Gamma$ whose automorphism group Aut$(\Gamma)$ acts as a Frobenius permutation group on the vertex set of $\Gamma$, that is, Aut$(\Gamma)$ acts vertex-transitively with the property that all nonidentity automorphisms fix either exactly one or zero vertices and there are some of each kind. The set $K$ of all fixed-point-free automorphisms together with the identity is called the kernel of $G$. Whenever $G$ is finite, $K$ is a regular normal subgroup of $G$ (F. G. Frobenius, 1901), in which case $\Gamma$ is a Cayley graph of $K$. The same holds true for all the infinite instances presented here.Infinite, locally finite, vertex-transitive graphs can be classified with respect to (i) the cardinality of their set of ends and (ii) their growth rate. We construct families of infinite GFRs for all possible combinations of these two properties. There exist infinitely many GFRs with polynomial growth of degree $d$ for every positive integer $d$, and there exist infinite families of GFRs of exponential growth, both $1$-ended and infinitely-ended, that underlie infinite chiral planar maps. There also exist GFRs of free products of finitely many finitely generated groups. Graphs of connectivity 1 having a Frobenius automorphism group are characterized.


Author(s):  
Richard Weiss

Let Γ be an undirected graph and G a subgroup of aut (Γ) acting transitively on the vertex set V(Γ) of Γ. Let x be an arbitrary vertex of Γ. We denote by T(x) the set of vertices adjacent to x and by G(x)Γ(x) the permutation group induced by the stabilizer G(x) of x in G on Γ(x); G(x)Γ(x) is called the subconstituent of G (with respect to Γ). Let G1(x) = {a ∈ G(x)|a ∈ G(y) for each y ∈ Γ(x)}. For each y ∈ Γ(x), let G(x, y) = G(x) ∩ G(y) and G1(x, y) = G1(x) ∩ G1(y). An s-path is an (s+ l)-tuple (x0, x1, …, xs) of vertices such that xi−1 ∈ Γ(xi) if 1 ≤ i ≤ s and xi−2 ≠ xi if 2 ≤ i ≤ s. Γ is called (G, s)-transitive if G acts transitively on the set of all s-paths but intransitively on the set of all (S+1)-paths in Γ.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


Author(s):  
Xuanlong Ma

Let [Formula: see text] be a finite group. The power graph of [Formula: see text] is the undirected graph whose vertex set is [Formula: see text], and two distinct vertices are adjacent if one is a power of the other. The reduced power graph of [Formula: see text] is the subgraph of the power graph of [Formula: see text] obtained by deleting all edges [Formula: see text] with [Formula: see text], where [Formula: see text] and [Formula: see text] are two distinct elements of [Formula: see text]. In this paper, we determine the proper connection number of the reduced power graph of [Formula: see text]. As an application, we also determine the proper connection number of the power graph of [Formula: see text].


2019 ◽  
Vol 18 (01) ◽  
pp. 1950006 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
S. Anukumar Kathirvel

Let [Formula: see text] be a finite commutative ring with nonzero identity and [Formula: see text] be the set of all units of [Formula: see text] The graph [Formula: see text] is the simple undirected graph with vertex set [Formula: see text] in which two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if there exists a unit element [Formula: see text] in [Formula: see text] such that [Formula: see text] is a unit in [Formula: see text] In this paper, we obtain degree of all vertices in [Formula: see text] and in turn provide a necessary and sufficient condition for [Formula: see text] to be Eulerian. Also, we give a necessary and sufficient condition for the complement [Formula: see text] to be Eulerian, Hamiltonian and planar.


Author(s):  
P. Nataraj ◽  
R. Sundareswaran ◽  
V. Swaminathan

In a simple, finite and undirected graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is said to be a degree equitable dominating set if for every [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the degree of [Formula: see text] in [Formula: see text]. The minimum cardinality of such a dominating set is denoted by [Formula: see text] and is called the equitable domination number of [Formula: see text]. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.


1967 ◽  
Vol 19 ◽  
pp. 1319-1328 ◽  
Author(s):  
M. E. Watkins ◽  
D. M. Mesner

In this note, G will denote a finite undirected graph without multiple edges, and V = V(G) will denote its vertex set. The largest integer n for which G is n-vertex connected is the vertex-connectivity of G and will be denoted by λ = λ(G). One defines ζ to be the largest integer z not exceeding |V| such that for any set U ⊂ V with |U| = z, there is a cycle in G which contains U. The symbol i(U) will denote the component index of U. As a standard reference for this and other terminology, the authors recommend O. Ore (3).


2018 ◽  
Vol 10 (05) ◽  
pp. 1850057 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
S. Raja

Let [Formula: see text], the finite cyclic group of order [Formula: see text]. Assume that [Formula: see text] and [Formula: see text]. The circulant graph [Formula: see text] is the undirected graph having the vertex set [Formula: see text] and edge set [Formula: see text]. Let [Formula: see text] be a set of positive, proper divisors of the integer [Formula: see text]. In this paper, by using [Formula: see text] we characterize certain connected integral circulant graphs with four distinct eigenvalues.


Sign in / Sign up

Export Citation Format

Share Document