scholarly journals Algebraic Surfaces of General Type with Small c21 in Positive Characteristic

2008 ◽  
Vol 191 ◽  
pp. 111-134 ◽  
Author(s):  
Christian Liedtke

AbstractWe establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we show that Horikawa surfaces lift to characteristic zero.

Author(s):  
Paula Tretkoff

This chapter discusses complex algebraic surfaces, with particular emphasis on the Miyaoka-Yau inequality and the rough classification of surfaces. Every complex algebraic surface is birationally equivalent to a smooth surface containing no exceptional curves. The latter is known as a minimal surface. Two related birational invariants, the plurigenus and the Kodaira dimension, play an important role in distinguishing between complex surfaces. The chapter first provides an overview of the rough classification of (smooth complex connected compact algebraic) surfaces before presenting two approaches that, in dimension 2, give the Miyaoka-Yau inequality. The first, due to Miyaoka, uses algebraic geometry, whereas the second, due to Aubin and Yau, uses analysis and differential geometry. The chapter also explains why equality in the Miyaoka-Yau inequality characterizes surfaces of general type that are free quotients of the complex 2-ball.


2021 ◽  
pp. 2150097
Author(s):  
Vicente Lorenzo

Minimal algebraic surfaces of general type [Formula: see text] such that [Formula: see text] are called Horikawa surfaces. In this note, [Formula: see text]-actions on Horikawa surfaces are studied. The main result states that given an admissible pair [Formula: see text] such that [Formula: see text], all the connected components of Gieseker’s moduli space [Formula: see text] contain surfaces admitting a [Formula: see text]-action. On the other hand, the examples considered allow us to produce normal stable surfaces that do not admit a [Formula: see text]-Gorenstein smoothing. This is illustrated by constructing non-smoothable normal surfaces in the KSBA-compactification [Formula: see text] of Gieseker’s moduli space [Formula: see text] for every admissible pair [Formula: see text] such that [Formula: see text]. Furthermore, the surfaces constructed belong to connected components of [Formula: see text] without canonical models.


2015 ◽  
Vol 151 (7) ◽  
pp. 1288-1308
Author(s):  
Friedrich Knop ◽  
Gerhard Röhrle

Let $G$ be a simple algebraic group. A closed subgroup $H$ of $G$ is said to be spherical if it has a dense orbit on the flag variety $G/B$ of $G$. Reductive spherical subgroups of simple Lie groups were classified by Krämer in 1979. In 1997, Brundan showed that each example from Krämer’s list also gives rise to a spherical subgroup in the corresponding simple algebraic group in any positive characteristic. Nevertheless, up to now there has been no classification of all such instances in positive characteristic. The goal of this paper is to complete this classification. It turns out that there is only one additional instance (up to isogeny) in characteristic 2 which has no counterpart in Krämer’s classification. As one of our key tools, we prove a general deformation result for subgroup schemes that allows us to deduce the sphericality of subgroups in positive characteristic from the same property for subgroups in characteristic zero.


2013 ◽  
Vol 149 (10) ◽  
pp. 1667-1684 ◽  
Author(s):  
Jin-Xing Cai ◽  
Wenfei Liu ◽  
Lei Zhang

AbstractIn this paper we prove that surfaces of general type with irregularity $q\geq 3$ are rationally cohomologically rigidified, and so are minimal surfaces $S$ with $q(S)= 2$ unless ${ K}_{S}^{2} = 8\chi ({ \mathcal{O} }_{S} )$. Here a surface $S$ is said to be rationally cohomologically rigidified if its automorphism group $\mathrm{Aut} (S)$ acts faithfully on the cohomology ring ${H}^{\ast } (S, \mathbb{Q} )$. As examples we give a complete classification of surfaces isogenous to a product with $q(S)= 2$ that are not rationally cohomologically rigidified.


Sign in / Sign up

Export Citation Format

Share Document