general deformation
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 10 (1) ◽  
pp. 039-057
Author(s):  
Maher T. El-Nimr ◽  
Ali M. Basha ◽  
Mohamed M. Abo-Raya ◽  
Mohamed H. Zakaria

In geotechnical engineering, ground movement caused by excavations is a challenging issue. The excessive differential settlement generated by soil movement induced by wall deflection may cause damage to nearby structures. A detailed literature review on the general deformation behavior of deep excavation support systems is presented in this paper. Many factors, such as normalized horizontal deflection (δh-max/He%), vertical displacement (δv-max/He%), δvmax/δhmax ratio, settlement influence zone (Do), etc., can play significant roles in describing the deflection behavior of the excavation system. A descriptive analysis of the reviewed data was carried out. The concluded δh-max/He% values range between 0.17 to 1.5, with a mean value of 0.58 for soft clay, while in the case of sands and stiff clay soils δh-max/He% value ranges between 0.07 to 0.40, with a mean value of 0.20. δv-max/He% values range between 0.13 to 1.10, with a mean value of 0.49 for soft soil, while its value ranges between 0.02 to 1.10, with a mean value of 0.24 in the case of sands and stiff clay soils. The settlement influence zone (Do) reaches a mean distance of 2.3He, which falls within Do=1.5-3.5He in the case of soft clays, while Do reaches a mean distance of 2.0He and 3.0He in the case of sands and other stiff clay soils, respectively. The relationship between system stiffness and excavation-induced wall and ground movements was discussed. Unfortunately, the literature review offers limited data regarding system stiffness, the 3-D nature of excavation support systems, excavation processes, and time effects.


Author(s):  
Xiao Han ◽  
Haiyang Yu ◽  
Guo-Yan Zhou ◽  
Fakun Zhuang ◽  
Shan-Tung Tu

Abstract Three-point bending specimen with fixed constraints (TPBSF) is a novel small specimen test technique, which can simultaneously obtain creep deformation and creep fracture data. However, the current researches are only focused on the small deformation theoretical analysis, which is contrary to the actual experiment results. In this study, the general deformation theory was introduced to analyze creep deformation behavior of TPBSF at the large deformation stage. Based on this theory, the equivalent stress and strain were analyzed. Then the feasibility and accuracy were verified by comparing with the experimental data of A7N01 aluminum alloy at 380 ?. The results show that the regressed creep parameters agree well with those from the uniaxial ones. It can be found that the equivalent stress obtained by the general deformation theory can be well used to life prediction analysis of A7N01 aluminum alloy.


2021 ◽  
Vol 1016 ◽  
pp. 928-933
Author(s):  
Anna Mogucheva ◽  
Diana Yuzbekova ◽  
Yuliya Igorevna Borisova

An Al-3Mg (wt. %) alloy was studied after equal channel angular pressing and subsequent cold rolling. The mechanical behavior of the alloy in the temperature range from 223 K to 373 K (from –50°C to 125°C) at strain rates 2.1×10–1 – 5.2×10–5 s–1 was investigated. The analysis of stress-strain curves was performed to determine the conditions of manifestation of the Portevin – Le Chatelier (PLC) effect in investigated alloy. The deformation curve at a temperature of 298 K (25°C) and a strain rate of 1×10–3 s–1 is characterized by instability of plastic flow in contrast to the deformation curves obtained under other studied strain rate/temperature conditions. Stress oscillations at the necking stage were observed at high temperatures (>323 K (50°C)) and lower strain rates (1×10–4 s–1 and 5.2×10–5 s–1) forming the left border of the PLC effect domain. In general, deformation curves are characterized by the absence of stress serrations during the uniform elongation.


2021 ◽  
Vol 250 ◽  
pp. 05008
Author(s):  
Ruixuan Qi ◽  
Genevieve S Langdon ◽  
Trevor J Cloete ◽  
Steeve Chung Kim Yuen

This paper presents the unique failure characteristics, such as fragmentation, internal cracks, general deformation and pitting, observed on a SS420C ball bearing from direct blast loading using a cylindrical PE-4 explosive. Axisymmetric simulations were performed to gain insights of the failure mechanisms. While additional work is needed to fully understand all characteristic found, valuable findings have been presented to explain some of the failures.


2020 ◽  
Vol 12 (22) ◽  
pp. 3697
Author(s):  
Felipe Orellana ◽  
Jose Manuel Delgado Blasco ◽  
Michael Foumelis ◽  
Peppe J.V. D’Aranno ◽  
Maria A. Marsella ◽  
...  

The road network of metropolitan Rome is determined by a large number of structures located in different geological environments. To maintain security and service conditions, satellite-based monitoring can play a key role, since it can cover large areas by accurately detecting ground displacements due to anthropic activities (underground excavations, interference with other infrastructures, etc.) or natural hazards, mainly connected to the critical hydrogeological events. To investigate the area, two different Differential Interferometry Synthetic Aperture Radar (DInSAR) processing methods were used in this study: the first with open source using the Persistent Scatterers Interferometry (PSI) of SNAP-StaMPS workflow for Sentinel-1 (SNT1) and the second with the SBAS technique for Cosmo-SkyMed (CSK). The results obtained can corroborate the displacement trends due to the characteristics of the soil and the geological environments. With Sentinel-1 data, we were able to obtain the general deformation overview of the overall highways network, followed by a selection and classification of the PSI content for each section. With Cosmo-SkyMed data, we were able to increase the precision in the analysis for one sample infrastructure for which high-resolution data from CSK were available. Both datasets were demonstrated to be valuable for collecting data useful to understand the safety condition of the infrastructure and to support the maintenance actions.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1250
Author(s):  
Abey S. Kelil ◽  
Appanah R. Appadu

Polynomials that are orthogonal with respect to a perturbation of the Freud weight function by some parameter, known to be modified Freudian orthogonal polynomials, are considered. In this contribution, we investigate certain properties of semi-classical modified Freud-type polynomials in which their corresponding semi-classical weight function is a more general deformation of the classical scaled sextic Freud weight |x|αexp(−cx6),c>0,α>−1. Certain characterizing properties of these polynomials such as moments, recurrence coefficients, holonomic equations that they satisfy, and certain non-linear differential-recurrence equations satisfied by the recurrence coefficients, using compatibility conditions for ladder operators for these orthogonal polynomials, are investigated. Differential-difference equations were also obtained via Shohat’s quasi-orthogonality approach and also second-order linear ODEs (with rational coefficients) satisfied by these polynomials. Modified Freudian polynomials can also be obtained via Chihara’s symmetrization process from the generalized Airy-type polynomials. The obtained linear differential equation plays an essential role in the electrostatic interpretation for the distribution of zeros of the corresponding Freudian polynomials.


2019 ◽  
Vol 28 (15) ◽  
pp. 1930023 ◽  
Author(s):  
Davood Momeni ◽  
Nayereh Majd ◽  
Mudhahir Al Ajmi

This is a mini-review about the rapidly growing subject of dual holographic complexity (HC) for subsystems in conformal field theory (CFT) using a subregion volume enclosed by the entangled area in the dual bulk theory. This proposal is named as HC = volume. We use this proposal to compute the HC for different geometries in bulk theory. Because this HC quantity diverges as a result of the existence of the UV cutoff in the CFT, we proposed a suitable regularization scheme by subtracting the contribution of the background (pure) AdS spacetime from the deformation of the AdS geometry. Furthermore, the time-dependent geometries are investigated using the AdS/CFT proposal and hence, we proposed a time-dependent copy for HC in such nonstatic geometries. As an attempt to make a relation between HC and holographic entanglement entropy (HEE), inspired from the pure geometrical origins, we showed that HC and HEE which are duals to different volumes/areas in the bulk theory would be connected in a universal form for a general deformation AdS geometry (called holographic Cavalieri principle). As a pioneering idea we build a holographic model for [Formula: see text] critically in black holes via regularized HC as the dual thermodynamic volume. The second-order phase transitions in two-dimensional holographic superconductors is explained by using the regularized HC as an order parameter. All the results presented in this mini-review are collected from the list of published works of the first author of this paper. In several cases, we gave further explanation and clarification to make the ideas more understandable to the community. Other proposals for complexity like complexity as on shell action are not included in this review paper.


2019 ◽  
Vol 16 (01) ◽  
pp. 1950009
Author(s):  
R. Fioresi ◽  
E. Latini ◽  
A. Marrani

We establish duality between real forms of the quantum deformation of the four-dimensional orthogonal group studied by Fioresi et al. [Quantum Klein space and superspace, preprint (2017), arXiv:1705.01755] and the classification work made by Borowiec et al. [Basic quantizations of [Formula: see text] Euclidean, Lorentz, Kleinian and quaternionic [Formula: see text] symmetries, J. High Energy Phys. 1711 (2017) 187]. Classically, these real forms are the isometry groups of [Formula: see text] equipped with Euclidean, Kleinian or Lorentzian metric. A general deformation, named [Formula: see text]-linked, of each of these spaces is then constructed, together with the coaction of the corresponding isometry group.


Author(s):  
Deniz Duran ◽  
İzzet Özdemir

Surface enlargement during bulk metal forming processes is one of the key parameters controlling the tribology at the tool-workpiece interface. Not only the surface roughness evolution but also the integrity of the lubricant layer critically reposes on surface enlargement. As an attempt to address this issue, in the first part of this work, a general, deformation gradient based surface enlargement description is implemented in a commercial finite element program. In the second part, forward rod extrusion tests with different area reductions are conducted using customized steel workpieces in which cylindrical copper rods are embedded through the depth. By sectioning the extruded parts and by identifying the position of the copper rods on the lateral surface, average surface enlargement values could be measured locally at different positions along the extrudate. Comparison of experiments and numerical predictions reveal that the deformation gradient based description performs reasonably well in capturing surface enlargement profiles both qualitatively and quantitatively.


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Girish Krishnan ◽  
Joshua Bishop-Moser ◽  
Charles Kim ◽  
Sridhar Kota

Fluid filled fiber reinforced elastomeric enclosures (FREEs) have been a popular choice for actuators in prosthetics and soft robots owing to their high power density and cost effective manufacturing. While a narrow class of FREEs known as McKibben's actuators have been extensively studied, there is a wide unexplored class that could be potentially used as actuators and soft structural members. This paper analyzes the mobility of generalized FREEs based on simple geometric relationships that result from the inextensibility of fibers and fluidic actuation. The analysis conducted can be classified into instantaneous kinematics and global or large deformation kinematics. Instantaneous kinematics reveals that the most general deformation pattern of the FREE is a screw motion about the axis of its cylinder, whose pitch is a function of fiber orientations. Furthermore, a set of fiber angles, which do not deform under volumetric actuation were identified as the locked manifold (LM). Global kinematic analysis revealed that every FREE continued to deform until its fiber configuration approached the LM. These insights were corroborated with finite element analysis (FEA) and testing for a small sample of FREE actuators.


Sign in / Sign up

Export Citation Format

Share Document