scholarly journals Diagnostic accuracy of dopaminergic imaging in prodromal dementia with Lewy bodies

2018 ◽  
Vol 49 (3) ◽  
pp. 396-402 ◽  
Author(s):  
Alan J. Thomas ◽  
Paul Donaghy ◽  
Gemma Roberts ◽  
Sean J. Colloby ◽  
Nicky A. Barnett ◽  
...  

AbstractBackgroundDopaminergic imaging has high diagnostic accuracy for dementia with Lewy bodies (DLB) at the dementia stage. We report the first investigation of dopaminergic imaging at the prodromal stage.MethodsWe recruited 75 patients over 60 with mild cognitive impairment (MCI), 33 with probable MCI with Lewy body disease (MCI-LB), 15 with possible MCI-LB and 27 with MCI with Alzheimer's disease. All underwent detailed clinical, neurological and neuropsychological assessments and FP-CIT [123I-N-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)] dopaminergic imaging. FP-CIT scans were blindly rated by a consensus panel and classified as normal or abnormal.ResultsThe sensitivity of visually rated FP-CIT imaging to detect combined possible or probable MCI-LB was 54.2% [95% confidence interval (CI) 39.2–68.6], with a specificity of 89.0% (95% CI 70.8–97.6) and a likelihood ratio for MCI-LB of 4.9, indicating that FP-CIT may be a clinically important test in MCI where any characteristic symptoms of Lewy body (LB) disease are present. The sensitivity in probable MCI-LB was 61.0% (95% CI 42.5–77.4) and in possible MCI-LB was 40.0% (95% CI 16.4–67.7).ConclusionsDopaminergic imaging had high specificity at the pre-dementia stage and gave a clinically important increase in diagnostic confidence and so should be considered in all patients with MCI who have any of the diagnostic symptoms of DLB. As expected, the sensitivity was lower in MCI-LB than in established DLB, although over 50% still had an abnormal scan. Accurate diagnosis of LB disease is important to enable early optimal treatment for LB symptoms.

2017 ◽  
Author(s):  
David Knopman

There are a relatively small number of disorders that account for the majority of dementia in the elderly that is not Alzheimer disease (AD): cerebrovascular disease, Lewy body disease (α-synucleinopathies), and the frontotemporal lobar degenerations. Cerebrovascular disease and Lewy body disease account for most non-AD dementia among persons in the eighth decade of life and beyond. These two frequently co-occur with AD but can occur in their pure forms rarely (in the case of dementia associated with cerebrovascular disease) or more commonly (in the case of Lewy body disease). There is no one cognitive or behavioral syndrome associated with cerebrovascular disease; however, attempts to isolate a common theme suggest that cognitive slowing is typical of cerebrovascular contributions to cognitive impairment. Cerebrovascular pathology relevant to cognitive impairment accumulates subclinically more commonly than it causes acute, strokelike declines in cognition. Dementia with Lewy bodies is a multidimensional disorder that includes a nonamnestic dementia, Parkinson disease or at least some parkinsonian features, a disorder of sleep and wakefulness, autonomic disturbances, and depression. The disorders of sleep prominently include rapid eye movement sleep behavior disorder, excessive daytime sleepiness, visual hallucinations, and marked fluctuations in level of alertness. The frontotemporal lobar degenerations are nearly as common as causes of dementia in persons under age 65 as is AD. The group of disorders includes two cognitive syndromes (primary progressive aphasia and behavior variant frontotemporal dementia) and two neuropathologic subtypes (tauopathy and TDP43 proteinopathy) and is associated with three major autosomal dominant genetic mutations (in MAPT, GRN, and C9ORF72). Key words: dementia with Lewy bodies, frontotemporal lobar degenerations, vascular cognitive impairment


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Jonathan Graff-Radford ◽  
Timothy G Lesnick ◽  
Rodolfo Savica ◽  
Qin Chen ◽  
Tanis J Ferman ◽  
...  

Abstract Among individuals with dementia with Lewy bodies, pathologic correlates of clinical course include the presence and extent of coexisting Alzheimer’s pathology and the presence of transitional or diffuse Lewy body disease. The objectives of this study are to determine (i) whether 18F-fluorodeoxyglucose PET signature patterns of dementia with Lewy bodies are associated with the extent of coexisting Alzheimer’s pathology and the presence of transitional or diffuse Lewy body disease and (ii) whether these 18F-fluorodeoxyglucose pattern(s) are associated with clinical course in dementia with Lewy bodies. Two groups of participants were included: a pathology-confirmed subset with Lewy body disease (n = 34) and a clinically diagnosed group of dementia with Lewy bodies (n = 87). A subset of the clinically diagnosed group was followed longitudinally (n = 51). We evaluated whether 18F-fluorodeoxyglucose PET features of dementia with Lewy bodies (higher cingulate island sign ratio and greater occipital hypometabolism) varied by Lewy body disease subtype (transitional versus diffuse) and Braak neurofibrillary tangle stage. We investigated whether the PET features were associated with the clinical trajectories by performing regression models predicting Clinical Dementia Rating Scale Sum of Boxes. Among autopsied participants, there was no difference in cingulate island sign or occipital hypometabolism by Lewy body disease type, but those with a lower Braak tangle stage had a higher cingulate island sign ratio compared to those with a higher Braak tangle stage. Among the clinically diagnosed dementia with Lewy bodies participants, a higher cingulate island ratio was associated with better cognitive scores at baseline and longitudinally. A higher 18F-fluorodeoxyglucose PET cingulate island sign ratio was associated with lower Braak tangle stage at autopsy, predicted a better clinical trajectory in dementia with Lewy body patients and may allow for improved prognostication of the clinical course in this disease.


Neurology ◽  
2016 ◽  
Vol 88 (3) ◽  
pp. 276-283 ◽  
Author(s):  
Alan J. Thomas ◽  
Johannes Attems ◽  
Sean J. Colloby ◽  
John T. O'Brien ◽  
Ian McKeith ◽  
...  

Objective:To conduct a validation study of 123I-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) nortropane (123I-FP-CIT) SPECT dopaminergic imaging in the clinical diagnosis of dementia with Lewy bodies (DLB) with autopsy as the gold standard.Methods:Patients >60 years of age with dementia who had undergone 123I-FP-CIT imaging in research studies and who had donated their brain tissue to the Newcastle Brain Tissue Resource were included. All had structured clinical research assessments, and clinical diagnoses were applied by consensus panels using international diagnostic criteria. All underwent 123I-FP-CIT imaging at baseline, and scans were rated as normal or abnormal by blinded raters. Patients were reviewed in prospective studies and after death underwent detailed autopsy assessment, and neuropathologic diagnoses were applied with the use of standard international criteria.Results:Fifty-five patients (33 with DLB and 22 with Alzheimer disease) were included. Against autopsy diagnosis, 123I-FP-CIT had a balanced diagnostic accuracy of 86% (sensitivity 80%, specificity 92%) compared with clinical diagnosis, which had an accuracy of 79% (sensitivity 87%, specificity 72%). Among patients with DLB, 10% (3 patients) met pathologic criteria for Lewy body disease but had normal 123I-FP-CIT imaging.Conclusions:This large autopsy analysis of 123I-FP-CIT imaging in dementia demonstrates that it is a valid and accurate biomarker for DLB, and the high specificity compared with clinical diagnosis (20% higher) is clinically important. The results need to be replicated with patients recruited from a wider range of settings, including movement disorder clinics and general practice. While an abnormal 123I-FP-CIT scan strongly supports Lewy body disease, a normal scan does not exclude DLB with minimal brainstem involvement.Classification of evidence:This study provides Class I evidence that 123I-FP-CIT dopaminergic neuroimaging accurately identifies patients with DLB.


2020 ◽  
Vol 32 (S1) ◽  
pp. 73-73
Author(s):  
Kai Sin Chin ◽  
Nawaf Yassi ◽  
Leonid Churilov ◽  
Colin L Masters ◽  
Rosie Watson

Background:Neurofibrillary tangles (NFT) formed by tau proteins, a pathological hallmark of Alzheimer’s disease, are a common co-pathology in people with Lewy body dementias, which include dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD).Aims:To investigate the prevalence of tau in Lewy body dementia, and its association with clinical outcomes.Methods:A systematic search was conducted on Medline, Embase and PubMed using the search term: (“dementia with Lewy bodies” OR “diffuse Lewy body disease”) AND (“tau protein” OR “tauopathy” OR “neurofibrillary tangle”). A total of 42 articles met the inclusion criteria for data extraction. Random-effect meta-analyses were performed to obtain pooled estimates for prevalence, and risk ratios (RR) or standardised mean difference (SMD) for clinical outcomes measures.Results:Braak NFT stage ≥III was observed in 67% (n=1399, 95%CI 59%-76%) of DLB and 52% (n=429, 95%CI 26%-78%) of PDD at autopsy. Abnormal CSF phosphorylated-tau levels were present in 27% (n=705, 95%CI 23%-30%) of DLB and 15% (n=172, 95%CI 5%-24%) of PDD cases. Higher tau burden in DLB was associated with reduced likelihood of manifesting visual hallucinations (RR 0.56; 95%CI 0.40-0.77) and motor parkinsonism (RR 0.62; 95%CI 0.40-0.98), lower diagnostic accuracy of DLB during life (RR 0.49; 95%CI 0.38-0.64) and worse cognition prior to death (SMD 0.60; 95%CI 0.44-0.76).Conclusions:Tau is more common in DLB than PDD and may negatively impact clinical diagnostic accuracy in people with DLB. Prospective longitudinal studies are needed to understand the roles of co-morbid neuropathologies in Lewy body dementias.


2015 ◽  
Vol 21 (3) ◽  
pp. 303-305 ◽  
Author(s):  
Annachiara Cagnin ◽  
Cinzia Bussè ◽  
Nela Jelcic ◽  
Francesca Gnoato ◽  
Micaela Mitolo ◽  
...  

2017 ◽  
Author(s):  
David Knopman

There are a relatively small number of disorders that account for the majority of dementia in the elderly that is not Alzheimer disease (AD): cerebrovascular disease, Lewy body disease (α-synucleinopathies), and the frontotemporal lobar degenerations. Cerebrovascular disease and Lewy body disease account for most non-AD dementia among persons in the eighth decade of life and beyond. These two frequently co-occur with AD but can occur in their pure forms rarely (in the case of dementia associated with cerebrovascular disease) or more commonly (in the case of Lewy body disease). There is no one cognitive or behavioral syndrome associated with cerebrovascular disease; however, attempts to isolate a common theme suggest that cognitive slowing is typical of cerebrovascular contributions to cognitive impairment. Cerebrovascular pathology relevant to cognitive impairment accumulates subclinically more commonly than it causes acute, strokelike declines in cognition. Dementia with Lewy bodies is a multidimensional disorder that includes a nonamnestic dementia, Parkinson disease or at least some parkinsonian features, a disorder of sleep and wakefulness, autonomic disturbances, and depression. The disorders of sleep prominently include rapid eye movement sleep behavior disorder, excessive daytime sleepiness, visual hallucinations, and marked fluctuations in level of alertness. The frontotemporal lobar degenerations are nearly as common as causes of dementia in persons under age 65 as is AD. The group of disorders includes two cognitive syndromes (primary progressive aphasia and behavior variant frontotemporal dementia) and two neuropathologic subtypes (tauopathy and TDP43 proteinopathy) and is associated with three major autosomal dominant genetic mutations (in MAPT, GRN, and C9ORF72). Key words: dementia with Lewy bodies, frontotemporal lobar degenerations, vascular cognitive impairment


Sign in / Sign up

Export Citation Format

Share Document