scholarly journals Radiocarbon Dating with the University of Washington Accelerator Mass Spectrometry System

Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 237-245 ◽  
Author(s):  
Pieter M Grootes ◽  
Minze Stuiver ◽  
George W Farwell ◽  
Donald D Leach ◽  
Fred H Schmidt

The University of Washington FN tandem accelerator mass spectrometry (AMS) system has been used in a series of 14C studies. 1) The 14C concentrations in annual growth rings for 1962, 1963, and 1964 of a Sitka spruce, each divided into ten sequential segments, were measured; a full and rapid response of tree-ring cellulose to atmospheric changes in 14CO2 is indicated, with a delay, if any, of not more than three weeks. 2) The C concentrations in two chemical fractions of dissolved organic carbon and in two fractions (by size) of particulate organic carbon were measured for Amazon River samples from several locations. All contain bomb carbon, but the amounts differ significantly. 3) Algae samples from lakes in the dry valleys of Antarctica were dated in order to assist in the reconstruction of the climatic history of Antarctica. 4) Background studies indicate that the contribution of the AMS system itself to the observed 14C concentrations is equivalent to an age of ca 60,000 14C yr BP; for a prepared sample of 5mg of carbon the background corresponds to ca 50,000 years.

Radiocarbon ◽  
1983 ◽  
Vol 25 (2) ◽  
pp. 711-718 ◽  
Author(s):  
G W Farwell ◽  
P M Grootes ◽  
D D Leach ◽  
F H Schmidt ◽  
Minze Stuiver

Our accelerator mass spectrometry (AMS) system shows a one-to-one relationship between sample 14C concentrations determined by AMS - and by β-counting. Measurements of unknown samples against a standard indicate that 14C concentration measurements to better than 2% can be made. For a 30-second data collection interval in a typical run of 100 intervals, the variability of the beam injected into the accelerator is ca 2%, that of the machine transmission is ca 4%, and counting statistics give 4.7% standard deviation for a sample of 80% of modern carbon.


Radiocarbon ◽  
2021 ◽  
pp. 1-7
Author(s):  
Corina Solís ◽  
Efraín Chávez ◽  
Arcadio Huerta ◽  
María Esther Ortiz ◽  
Alberto Alcántara ◽  
...  

ABSTRACT Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.


2011 ◽  
Author(s):  
W. E. Kieser ◽  
X.-L. Zhao ◽  
I. D. Clark ◽  
T. Kotzer ◽  
A. E. Litherland ◽  
...  

Author(s):  
Seiji Hosoya ◽  
Kimikazu Sasa ◽  
Tsutomu Takahashi ◽  
Tetsuya Matsunaka ◽  
Masumi Matsumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document