The accelerator mass spectrometry facility at the University of Washington: Current status and an application to the 14C profile of a tree ring

Author(s):  
George W. Farwell ◽  
Pieter M. Grootes ◽  
Donald D. Leach ◽  
Fred H. Schmidt
2011 ◽  
Author(s):  
W. E. Kieser ◽  
X.-L. Zhao ◽  
I. D. Clark ◽  
T. Kotzer ◽  
A. E. Litherland ◽  
...  

Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 237-245 ◽  
Author(s):  
Pieter M Grootes ◽  
Minze Stuiver ◽  
George W Farwell ◽  
Donald D Leach ◽  
Fred H Schmidt

The University of Washington FN tandem accelerator mass spectrometry (AMS) system has been used in a series of 14C studies. 1) The 14C concentrations in annual growth rings for 1962, 1963, and 1964 of a Sitka spruce, each divided into ten sequential segments, were measured; a full and rapid response of tree-ring cellulose to atmospheric changes in 14CO2 is indicated, with a delay, if any, of not more than three weeks. 2) The C concentrations in two chemical fractions of dissolved organic carbon and in two fractions (by size) of particulate organic carbon were measured for Amazon River samples from several locations. All contain bomb carbon, but the amounts differ significantly. 3) Algae samples from lakes in the dry valleys of Antarctica were dated in order to assist in the reconstruction of the climatic history of Antarctica. 4) Background studies indicate that the contribution of the AMS system itself to the observed 14C concentrations is equivalent to an age of ca 60,000 14C yr BP; for a prepared sample of 5mg of carbon the background corresponds to ca 50,000 years.


Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 33-39 ◽  
Author(s):  
J R Southon ◽  
G M Santos

The Keck Carbon Cycle accelerator mass spectrometry facility at the University of California, Irvine, operates a National Electronics Corporation 40-sample MC-SNICS ion source. We describe modifications that have increased beam current output, improved reliability, and made the source easier to service.


Radiocarbon ◽  
2021 ◽  
pp. 1-7
Author(s):  
Corina Solís ◽  
Efraín Chávez ◽  
Arcadio Huerta ◽  
María Esther Ortiz ◽  
Alberto Alcántara ◽  
...  

ABSTRACT Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.


Radiocarbon ◽  
2019 ◽  
Vol 62 (4) ◽  
pp. 891-899 ◽  
Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Ulf Büntgen ◽  
Michael Friedrich ◽  
Ronny Friedrich ◽  
...  

ABSTRACTAdvances in accelerator mass spectrometry have resulted in an unprecedented amount of new high-precision radiocarbon (14C) -dates, some of which will redefine the international 14C calibration curves (IntCal and SHCal). Often these datasets are unaccompanied by detailed quality insurances in place at the laboratory, questioning whether the 14C structure is real, a result of a laboratory variation or measurement-scatter. A handful of intercomparison studies attempt to elucidate laboratory offsets but may fail to identify measurement-scatter and are often financially constrained. Here we introduce a protocol, called Quality Dating, implemented at ETH-Zürich to ensure reproducible and accurate high-precision 14C-dates. The protocol highlights the importance of the continuous measurements and evaluation of blanks, standards, references and replicates. This protocol is tested on an absolutely dated German Late Glacial tree-ring chronology, part of which is intercompared with the Curt Engelhorn-Center for Archaeometry, Mannheim, Germany (CEZA). The combined dataset contains 170 highly resolved, highly precise 14C-dates that supplement three decadal dates spanning 280 cal. years in IntCal, and provides detailed 14C structure for this interval.


Author(s):  
Seiji Hosoya ◽  
Kimikazu Sasa ◽  
Tsutomu Takahashi ◽  
Tetsuya Matsunaka ◽  
Masumi Matsumura ◽  
...  

Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 163-167 ◽  
Author(s):  
J C Kim ◽  
J H Park ◽  
I C Kim ◽  
C Lee ◽  
M K Cheoun ◽  
...  

The accelerator mass spectrometry facility at the Seoul National University (SNU-AMS) was completed in December 1998 and a report was presented at the Vienna AMS conference in September 1999. At the conference, we described the basic components of our accelerator system and reported the results of the performance test. Since then, extensive testing of the accuracy and reproducibility of the system has been carried out, and about 200 unknown samples have been measured so far. We obtained a precision of 4‰ for modern samples, and an accuracy of approximately 40 yr was demonstrated by analyzing samples that were previously dated with a conventional technique and by other AMS laboratories. We present these results here, together with detailed descriptions of our data-taking and analysis procedures.


Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 473-479 ◽  
Author(s):  
Hiromasa Ozaki ◽  
Mineo Imamura ◽  
Hiroyuki Matsuzaki ◽  
Takumi Mitsutani

In order to investigate the regional atmospheric radiocarbon offset, accelerator mass spectrometry (AMS) 14C measurements were made on 5-yr increments of a Japanese wood sample dendrochronologically dated to 820–436 BC. The 14C data from the Japanese tree-ring samples were compared with the IntCal04 calibration curve (Reimer et al. 2004). In most parts, the differences between IntCal04 and 14C dates in the Japanese tree-ring samples were within experimental statistical errors. At around 680 BC, however, significant differences of up to 100 14C yr were observed. These differences may indicate either regional offsets in Japan or the short-term fluctuation of a subdecadal timescale in atmospheric 14C variations.


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 663-673 ◽  
Author(s):  
Claudio Tuniz ◽  
David Fink ◽  
Michael Hotchkis ◽  
Geraldine Jacobsen ◽  
Ewan Lawson ◽  
...  

The ANTARES accelerator mass spectrometry facility at Lucas Heights Research Laboratory is operational and AMS measurements of 14C, 26Al and 36Cl are being carried out routinely. Measurement of 129I recently commenced and capabilities for other long-lived radioisotopes such as 10Be are being established. The overall aim of the facility is to develop advanced programs in Quaternary science, global climate change, biomedicine and nuclear safeguards.


Sign in / Sign up

Export Citation Format

Share Document