scholarly journals Evolution of Dwarf Galaxies in High Pressure Environments

1999 ◽  
Vol 186 ◽  
pp. 483-483
Author(s):  
I. Murakami ◽  
A. Babul

We use 2D hydrodynamical calculations to examine the effect of the external medium on evolution of supernova-driven outflows from dwarf galaxies. Babul & Rees (1992) have suggested a high external pressure may be able to prevent the outflows from escaping beyond the galaxy and that this material, as it cools and falls back into the galaxy, would serve as fuel for a second epoch of star formation. When thermal pressure is dominant, such evolution of the outflows is seen in our simulations and the gas falls back into the galaxy. Babul & Rees, however, did not take into account the possibility that in high pressure environments such as clusters, galaxies are moving and therefore, subject to ram pressure. In our simulations, we find that ram pressure causes the mass shell associated with the outflow to fragment into clumps. These clumps remain in the vicinity of the galaxy for a few tens of million years before being swept away. The distribution of the clouds gives the galaxy in our simulations a characteristic “head-tail” appearance. If the clouds experience star formation during this epoch, we would expect that the light distribution would also show this “head-tail” feature. The tail-like structure is a transient feature that will eventually disappear. We speculate that galaxies observed by Dickinson (1996) in the z = 1.15 cluster around 3C324 are such galaxies.

2011 ◽  
Vol 28 (3) ◽  
pp. 271-279 ◽  
Author(s):  
N. Santiago-Figueroa ◽  
M. E. Putman ◽  
J. Werk ◽  
G. R. Meurer ◽  
E. Ryan-Weber

AbstractWe present VLA 21-cm observations of the spiral galaxy ESO 481-G017 to determine the nature of remote star formation traced by an Hii region found 43 kpc and ∼800 km s−1 from the galaxy center (in projection). ESO 481-G017 is found to have a 120 kpc Hi disk with a mass of 1.2 × 1010M⊙ and UV GALEX images reveal spiral arms extending into the gaseous disk. Two dwarf galaxies with Hi masses close to 108M⊙ are detected at distances of ∼200 kpc from ESO 481-G017 and a Hi cloud with a mass of 6 × 107M⊙ is found near the position and velocity of the remote Hii region. The Hii region is somewhat offset from the Hi cloud spatially and there is no link to ESO 481-G017 or the dwarf galaxies. We consider several scenarios for the origin of the cloud and Hii region and find the most likely is a dwarf galaxy that is undergoing ram pressure stripping. The Hi mass of the cloud and Hi luminosity of the Hii region (1038.1 erg s−1) are consistent with dwarf galaxy properties, and the stripping can trigger the star formation as well as push the gas away from the stars.


2018 ◽  
Vol 616 ◽  
pp. A96 ◽  
Author(s):  
Yves Revaz ◽  
Pascale Jablonka

We present the results of a set of high-resolution chemo-dynamical simulations of dwarf galaxies in a ΛCDM cosmology. Out of an original (3.4 Mpc/h)3 cosmological box, a sample of 27 systems are re-simulated from z = 70 to z = 0 using a zoom-in technique. Gas and stellar properties are confronted to the observations in the greatest details: in addition to the galaxy global properties, we investigated the model galaxy velocity dispersion profiles, half-light radii, star formation histories, stellar metallicity distributions, and [Mg/Fe] abundance ratios. The formation and sustainability of the metallicity gradients and kinematically distinct stellar populations are also tackled. We show how the properties of six Local Group dwarf galaxies, NGC 6622, Andromeda II, Sculptor, Sextans, Ursa Minor and Draco are reproduced, and how they pertain to three main galaxy build-up modes. Our results indicate that the interaction with a massive central galaxy could be needed for a handful of Local Group dwarf spheroidal galaxies only, the vast majority of the systems and their variety of star formation histories arising naturally from a ΛCDM framework. We find that models fitting well the local Group dwarf galaxies are embedded in dark haloes of mass between 5 × 108 to a few 109 M⊙, without any missing satellite problem. We confirm the failure of the abundance matching approach at the mass scale of dwarf galaxies. Some of the observed faint however gas-rich galaxies with residual star formation, such as Leo T and Leo P, remain challenging. They point out the need of a better understanding of the UV-background heating.


2018 ◽  
Vol 14 (S344) ◽  
pp. 280-282
Author(s):  
Megan C. Johnson ◽  
Kristen B. W. McQuinn ◽  
John Cannon ◽  
Charlotte Martinkus ◽  
Evan Skillman ◽  
...  

AbstractStarbursts are finite periods of intense star formation (SF) that can dramatically impact the evolutionary state of a galaxy. Recent results suggest that starbursts in dwarf galaxies last longer and are distributed over more of the galaxy than previously thought, with star formation efficiencies (SFEs) comparable to spiral galaxies, much higher than those typical of non-bursting dwarfs. This difference might be explainable if the starburst mode is externally triggered by gravitational interactions with other nearby systems. We present new, sensitive neutral hydrogen observations of 18 starburst dwarf galaxies, which are part of the STARburst IRregular Dwarf Survey (STARBIRDS) and each were mapped with the Green Bank Telescope (GBT) and/or Parkes Telescope in order to study the low surface brightness gas distributions, a common tracer for tidal interactions.


2020 ◽  
Vol 493 (4) ◽  
pp. 5625-5635
Author(s):  
Cody M Rude ◽  
Madina R Sultanova ◽  
Gihan L Ipita Kaduwa Gamage ◽  
Wayne A Barkhouse ◽  
Sandanuwan P Kalawila Vithanage

ABSTRACT Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effects than giant systems. Combined luminosity functions (LFs) in the r and u band of 15 galaxy clusters were constructed using archival data from the Canada–France–Hawaii Telescope. LFs were measured as a function of clustercentric radius from stacked cluster data. Marginal evidence was found for an increase in the faint-end slope of the u-band LF relative to the r-band with increasing clustercentric radius. The dwarf-to-giant ratio (DGR) was found to increase toward the cluster outskirts, with the u-band DGR increasing faster with clustercentric radius compared to the r-band. The dG blue fraction was found to be ∼2 times larger than the giant galaxy blue fraction over all clustercentric distance (∼5σ level). The central concentration (C) was used as a proxy to distinguish nucleated versus non-nucleated dGs. The ratio of high-C to low-C dGs was found to be ∼2 times greater in the inner cluster region compared to the outskirts (2.8σ level). The faint-end slope of the r-band LF for the cluster outskirts (0.6 ≤ r/r200 < 1.0) is steeper than the Sloan Digital Sky Survey field LF, while the u-band LF is marginally steeper at the 2.5σ level. Decrease in the faint-end slope of the r- and u-band cluster LFs towards the cluster centre is consistent with quenching of star formation via ram pressure stripping and galaxy–galaxy interactions.


2010 ◽  
Vol 2010 ◽  
pp. 1-25 ◽  
Author(s):  
Michele Cignoni ◽  
Monica Tosi

In this tutorial paper we summarize how the star formation (SF) history of a galactic region can be derived from the colour-magnitude diagram (CMD) of its resolved stars. The procedures to build synthetic CMDs and to exploit them to derive the SF histories (SFHs) are described, as well as the corresponding uncertainties. The SFHs of resolved dwarf galaxies of all morphological types, obtained from the application of the synthetic CMD method, are reviewed and discussed. To summarize: (1) only early-type galaxies show evidence of long interruptions in the SF activity; late-type dwarfs present rather continuous, orgasping, SF regimes; (2) a few early-type dwarfs have experienced only one episode of SF activity concentrated at the earliest epochs, whilst many others show extended or recurrent SF activity; (3) no galaxy experiencing now its first SF episode has been found yet; (4) no frequent evidence of strong SF bursts is found; (5) there is no significant difference in the SFH of dwarf irregulars and blue compact dwarfs, except for the current SF rates. Implications of these results on the galaxy formation scenarios are briefly discussed.


2018 ◽  
Vol 614 ◽  
pp. A130 ◽  
Author(s):  
K. George ◽  
P Joseph ◽  
P. Côté ◽  
S. K. Ghosh ◽  
J. B. Hutchings ◽  
...  

Context. The tidal tails of post-merger galaxies exhibit ongoing star formation far from their disks. The study of such systems can be useful for our understanding of gas condensation in diverse environments. Aims. The ongoing star formation in the tidal tails of post-merger galaxies can be directly studied from ultraviolet (UV) imaging observations. Methods. The post merger galaxy NGC7252 (“Atoms-for-Peace” galaxy) is observed with the Astrosat UV imaging telescope (UVIT) in broadband NUV and FUV filters to isolate the star-forming regions in the tidal tails and study the spatial variation in star formation rates. Results. Based on ultraviolet imaging observations, we discuss star-forming regions of ages <200 Myr in the tidal tails. We measure star formation rates in these regions and in the main body of the galaxy. The integrated star formation rate (SFR) of NGC7252 (i.e., that in the galaxy and tidal tails combined) without correcting for extinction is found to be 0.81 ± 0.01 M⊙ yr−1. We show that the integrated SFR can change by an order of magnitude if the extinction correction used in SFR derived from other proxies are taken into consideration. The star formation rates in the associated tidal dwarf galaxies (NGC7252E, SFR = 0.02 M⊙ yr−1 and NGC7252NW, SFR = 0.03 M⊙ yr−1) are typical of dwarf galaxies in the local Universe. The spatial resolution of the UV images reveals a gradient in star formation within the tidal dwarf galaxy. The star formation rates show a dependence on the distance from the centre of the galaxy. This can be due to the different initial conditions responsible for the triggering of star formation in the gas reservoir that was expelled during the recent merger in NGC7252.


2019 ◽  
Vol 486 (1) ◽  
pp. L26-L30 ◽  
Author(s):  
Mohammadtaher Safarzadeh ◽  
Abraham Loeb

ABSTRACT We study the recently observed JellyFish galaxies (JFGs), which are found to have their gas content ram pressure stripped away in galaxy clusters. These galaxies are observed to have an enhanced star formation rate of about 0.2 dex compared with a control sample of the same stellar mass in their discs. We model the increase in the star formation efficiency as a function of intracluster medium pressure and parametrize the cold gas content of the galaxies as a function of cluster-centric distance. We show that regarding the external pressure as a positive feedback results in agreement with the observed distribution of enhanced star formation in the JFGs if clouds are shielded from evaporation by magnetic fields. Our results predict that satellites with halo mass $\lt 10^{11}{\rm \, M_\odot }$ moving with Mach numbers $\mathcal {M}\approx 2$, and inclination angles below 60 deg, are more likely to be detected as JFGs.


2020 ◽  
Vol 494 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Yuta Tarumi ◽  
Naoki Yoshida ◽  
Shigeki Inoue

ABSTRACT We study the enrichment and mixing of r-process elements in ultrafaint dwarf galaxies (UFDs). We assume that r-process elements are produced by neutron-star mergers (NSMs), and examine multiple models with different natal kick velocities and explosion energies. To this end, we perform cosmological simulations of galaxy formation to follow mixing of the dispersed r-process elements driven by star formation and the associated stellar feedback in progenitors of UFDs. We show that the observed europium abundance in Reticulum II is reproduced by our inner explosion model where an NSM is triggered at the centre of the galaxy, whereas the relatively low abundance in Tucana III is reproduced if an NSM occurs near the virial radius of the progenitor galaxy. The latter case is realized only if the neutron-star binary has a large natal kick velocity and travels over a long distance of a kiloparsec before merger. In both the inner and outer explosion cases, it is necessary for the progenitor galaxy to sustain prolonged star formation over a few hundred million years after the NSM, so that the dispersed r-process elements are well mixed within the interstellar medium. Short-duration star formation results in inefficient mixing, and then a large variation is imprinted in the stellar europium abundances, which is inconsistent with the observations of Reticulum II and Tucana III.


2018 ◽  
Vol 14 (S344) ◽  
pp. 233-239
Author(s):  
Alberto D. Bolatto

AbstractThis is a brief review of our understanding of the properties of the interstellar medium (ISM) in dwarf galaxies in connection to their star formation activity. What are the dominant phases of the ISM in these objects? How do the properties of these phases depend on the galaxy properties? What do we know about their cold gas content and its link to star formation activity? Does star formation proceed differently in these galaxies? How does star formation feedback operate in dwarf galaxies? The availability of observations from space-based facilities such as FUSE, Spitzer, Herschel, and Fermi, as well as observatories such as SOFIA and ALMA, is allowing us to make significant strides in our understanding of these questions.


2018 ◽  
Vol 620 ◽  
pp. A39 ◽  
Author(s):  
T. Jeřábková ◽  
A. Hasani Zonoozi ◽  
P. Kroupa ◽  
G. Beccari ◽  
Z. Yan ◽  
...  

The stellar initial mass function (IMF) is commonly assumed to be an invariant probability density distribution function of initial stellar masses. These initial stellar masses are generally represented by the canonical IMF, which is defined as the result of one star formation event in an embedded cluster. As a consequence, the galaxy-wide IMF (gwIMF) should also be invariant and of the same form as the canonical IMF; gwIMF is defined as the sum of the IMFs of all star-forming regions in which embedded clusters form and spawn the galactic field population of the galaxy. Recent observational and theoretical results challenge the hypothesis that the gwIMF is invariant. In order to study the possible reasons for this variation, it is useful to relate the observed IMF to the gwIMF. Starting with the IMF determined in resolved star clusters, we apply the IGIMF-theory to calculate a comprehensive grid of gwIMF models for metallicities, [Fe/H] ∈ (−3, 1), and galaxy-wide star formation rates (SFRs), SFR ∈ (10−5, 105) M⊙ yr−1. For a galaxy with metallicity [Fe/H] < 0 and SFR > 1 M⊙ yr−1, which is a common condition in the early Universe, we find that the gwIMF is both bottom light (relatively fewer low-mass stars) and top heavy (more massive stars), when compared to the canonical IMF. For a SFR < 1 M⊙ yr−1 the gwIMF becomes top light regardless of the metallicity. For metallicities [Fe/H] > 0 the gwIMF can become bottom heavy regardless of the SFR. The IGIMF models predict that massive elliptical galaxies should have formed with a gwIMF that is top heavy within the first few hundred Myr of the life of the galaxy and that it evolves into a bottom heavy gwIMF in the metal-enriched galactic centre. Using the gwIMF grids, we study the SFR−Hα relation and its dependency on metallicity and the SFR. We also study the correction factors to the Kennicutt SFRK − Hα relation and provide new fitting functions. Late-type dwarf galaxies show significantly higher SFRs with respect to Kennicutt SFRs, while star-forming massive galaxies have significantly lower SFRs than hitherto thought. This has implications for gas-consumption timescales and for the main sequence of galaxies. We explicitly discuss Leo P and ultra-faint dwarf galaxies.


Sign in / Sign up

Export Citation Format

Share Document