intense star formation
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Vol 922 (2) ◽  
pp. 135
Author(s):  
Guido De Marchi ◽  
Nino Panagia ◽  
Antonino P. Milone

Abstract We report on the extinction properties in the fields around the clusters NGC 1854, NGC 1856, and NGC 1858 in the bar of the Large Magellanic Cloud. The color–magnitude diagrams of the stars in all these regions show an elongated red giant clump that reveals a variable amount of extinction across these fields, ranging from A V ≃ 0.2 to A V ≃ 1.9, including Galactic foreground extinction. The extinction properties nonetheless are remarkably uniform. The slope of the reddening vectors measured in the (V − I, V) and (B − I, B) color–magnitude planes is fully in line with the A V /E(B − V) ≃ 5.5 value found in the outskirts of 30 Dor. This indicates the presence of an additional gray extinction component in the optical requiring big grains to be about twice as abundant as in the diffuse Galactic interstellar medium (ISM). Areas of higher extinction appear to be systematically associated with regions of more intense star formation, as measured by the larger number of stars more massive than 8 M ⊙, thus making injection of big grains into the ISM by a SNII explosion the likely mechanism at the origin of the observed gray extinction component.


2021 ◽  
Vol 502 (1) ◽  
pp. 700-713
Author(s):  
Sunmyon Chon ◽  
Takashi Hosokawa ◽  
Kazuyuki Omukai

ABSTRACT The direct collapse (DC) is a promising mechanism that provides massive seed black holes (BHs) with ∼105 M⊙ in the early universe. To study a long-term accretion growth of a direct-collapse black hole (DCBH), we perform cosmological radiation-hydrodynamics simulations, extending our previous work where we investigated its formation stage. With a high spatial resolution down below the Bondi radius, we show that the accretion rate on to the BH is far below the Eddington value. Such slow mass growth is partly because of the strong radiative feedback from the accreting BH to the surrounding dense gas. Even after it falls into the first galaxy, the accretion rate is substantially suppressed due to the supernova feedback associated with the intense star formation. Moreover, the BH has a large velocity of ∼100 km s−1 relative to the gas, which further reduces the accretion rate. This large relative velocity stems from the fact that the DCBHs form in metal-free environments typically at ∼1 kpc from the galaxy. The BH accelerates as it approaches the galactic centre due to the gravity. The relative velocity never damps and the BH wanders around the outer galactic region. An analytic estimate predicts that the DCBH formation within ∼100 pc around the galactic centre is necessary to decelerate the BH with dynamical friction before z = 7. Since metal enrichment with Z ∼ 10−5−10−3 Z⊙ is expected there, the formation of DCBHs in the metal-enriched environments is preferable for the subsequent rapid growth.


2020 ◽  
Vol 500 (4) ◽  
pp. 5229-5248
Author(s):  
Ryan Endsley ◽  
Daniel P Stark ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We quantify the distribution of [O iii]+H β line strengths at z ≃ 7 using a sample of 20 bright ($\mathrm{M}_{\mathrm{UV}}^{}$ ≲ –21) galaxies. We select these systems over wide-area fields (2.3 deg2 total) using a new colour-selection that precisely selects galaxies at z ≃ 6.63–6.83, a redshift range where blue Spitzer/IRAC [3.6]−[4.5] colours unambiguously indicate strong [O iii]+H β emission. These 20 galaxies suggest a lognormal [O iii]+H β EW distribution with median EW = 759$^{+112}_{-113}$ Å and standard deviation = 0.26$^{+0.06}_{-0.05}$ dex. We find no evidence for strong variation in this EW distribution with UV luminosity. The typical [O iii]+H β EW at z ≃ 7 implied by our sample is considerably larger than that in massive star-forming galaxies at z ≃ 2, consistent with a shift towards larger average sSFR (4.4 Gyr−1) and lower metallicities (0.16 Z⊙). We also find evidence for the emergence of a population with yet more extreme nebular emission ([O iii]+H β EW > 1200 Å) that is rarely seen at lower redshifts. These objects have extremely large sSFR (>30 Gyr−1), as would be expected for systems undergoing a burst or upturn in star formation. While this may be a short-lived phase, our results suggest that 20 per cent of the z ≃ 7 population has such extreme nebular emission, implying that galaxies likely undergo intense star formation episodes regularly at z > 6. We argue that this population may be among the most effective ionizing agents in the reionization era, both in terms of photon production efficiency and escape fraction. We furthermore suggest that galaxies passing through this large sSFR phase are likely to be very efficient in forming bound star clusters.


2020 ◽  
Vol 641 ◽  
pp. A124 ◽  
Author(s):  
M. D. Lehnert ◽  
C. Yang ◽  
B. H. C. Emonts ◽  
A. Omont ◽  
E. Falgarone ◽  
...  

We present ALMA observations of hydrogen fluoride, HF J = 1–0, water, H2O (220–211), and the 1.2 THz rest-frame continuum emission from the z = 4.7 system BR 1202-0725. System BR 1202-0725 is a galaxy group consisting of a quasi-stellar object (QSO), a sub-millimeter galaxy (SMG), and a pair of Lyα emitters. We detected HF in emission in the QSO and possibly in absorption in the SMG, while water was detected in emission in both the QSO and the SMG. The QSO is the most luminous HF J = 1–0 emitter that has yet been found and has the same ratio of HF emission-line to infrared luminosity, LHF/LIR, as a small sample of local active galactic nuclei and the Orion Bar. This consistency covers about ten orders of magnitude in LIR. Based on the conclusions of a study of HF emission in the Orion Bar and simple radiative transfer modeling, the HF emission in the QSO is excited either by collisions with electrons (and H2) in molecular plasmas irradiated by the AGN and intense star formation, or predominately by collisions with H2, with a modest contribution from electrons, in a relatively high temperature (∼120 K), dense (∼105 cm−3) medium. The high density of electrons necessary to collisionally excite the HF J = 1–0 line can be supplied in sufficient quantities by the estimated column density of C+. Although HF should be an excellent tracer of molecular outflows, we found no strong kinematic evidence for outflows in HF in either the QSO or the SMG. From a putative absorption feature in HF observed against the continuum emission from the SMG, we conducted a bootstrap analysis to estimate an upper limit on the outflow rate, Ṁoutflow ≲ 45 M⊙ yr−1. This result implies that the ratio of the molecular outflow rate to the star formation rate is Ṁoutflow/SFR ≲ 5% for the SMG. Both the QSO and the SMG are among the most luminous H2O (220–211) emitters currently known and are found to lie along the same relationship between LH2O (220 − 211)/LIR and LIR as a large sample of local and high-redshift star-forming galaxies. The kinematics of the H2O (220–211) line in the SMG is consistent with a rotating disk as found previously but the line profile appears broader than other molecular lines, with a full width at half maximum of ∼1020 km s−1. The broadness of the line, which is similar to the width of a much lower resolution observation of CO(2-1), may suggest that either the gas on large scales (≳4 kpc) is significantly more disturbed and turbulent due either to interactions and mass exchange with the other members of the group, or to the dissipation of the energy of the intense star formation, or both. Overall however, the lack of significant molecular outflows in either source may imply that much of the energy from the intense star formation and active galactic nucleus in this pair is being dissipated in their interstellar media.


2020 ◽  
Vol 496 (4) ◽  
pp. 4606-4623 ◽  
Author(s):  
L Morselli ◽  
G Rodighiero ◽  
A Enia ◽  
E Corbelli ◽  
V Casasola ◽  
...  

ABSTRACT In this work, we analyse the connection between gas availability and the position of a region with respect to the spatially resolved main-sequence (MS) relation. Following the procedure presented in Enia et al. (2020), for a sample of five face-on, grand design spiral galaxies located on the MS we obtain estimates of stellar mass and star formation rate surface densities (Σ⋆ and ΣSFR) within cells of 500 pc size. Thanks to H i 21cm and 12CO(2–1) maps of comparable resolution, within the same cells we estimate the surface densities of the atomic (ΣH i) and molecular ($\Sigma _{\rm {H_2}}$) gas and explore the correlations among all these quantities. Σ⋆, ΣSFR, and $\Sigma _{\rm {H_2}}$ define a 3D relation whose projections are the spatially resolved MS, the Kennicutt–Schmidt law and the molecular gas MS. We find that $\Sigma _{\rm {H_2}}$ steadily increases along the MS relation and is almost constant perpendicular to it. ΣH i is nearly constant along the MS and increases in its upper envelope. As a result, ΣSFR can be expressed as a function of Σ⋆ and ΣH i, following the relation log ΣSFR = 0.97log Σ⋆ + 1.99log ΣH i − 11.11. We show that the total gas fraction significantly increases towards the starburst regions, accompanied by a weak increase in star formation efficiency. Finally, we find that H2/H i varies strongly with the distance from the MS, dropping dramatically in regions of intense star formation, where the UV radiation from newly formed stars dissociates the H2 molecule, illustrating the self-regulating nature of the star formation process.


2020 ◽  
Vol 493 (4) ◽  
pp. 5273-5289 ◽  
Author(s):  
Lucia Armillotta ◽  
Mark R Krumholz ◽  
Enrico M Di Teodoro

ABSTRACT We use the hydrodynamical simulation of our inner Galaxy presented in Armillotta et al. to study the gas distribution and kinematics within the Central Molecular Zone (CMZ). We use a resolution high enough to capture the gas emitting in dense molecular tracers such as NH3 and HCN, and simulate a time window of 50 Myr, long enough to capture phases during which the CMZ experiences both quiescent and intense star formation. We then post-process the simulated CMZ to calculate its spatially dependent chemical and thermal state, producing synthetic emission data cubes and maps of both H i and the molecular gas tracers CO, NH3, and HCN. We show that, as viewed from Earth, gas in the CMZ is distributed mainly in two parallel and elongated features extending from positive longitudes and velocities to negative longitudes and velocities. The molecular gas emission within these two streams is not uniform, and it is mostly associated with the region where gas flowing towards the Galactic Centre through the dust lanes collides with gas orbiting within the ring. Our simulated data cubes reproduce a number of features found in the observed CMZ. However, some discrepancies emerge when we use our results to interpret the position of individual molecular clouds. Finally, we show that, when the CMZ is near a period of intense star formation, the ring is mostly fragmented as a consequence of supernova feedback, and the bulk of the emission comes from star-forming molecular clouds. This correlation between morphology and star formation rate should be detectable in observations of extragalactic CMZs.


Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 97-100 ◽  
Author(s):  
H. Umehata ◽  
M. Fumagalli ◽  
I. Smail ◽  
Y. Matsuda ◽  
A. M. Swinbank ◽  
...  

Cosmological simulations predict that the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-α radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA22 protocluster at a redshift of 3.1. Intense star formation and supermassive black-hole activity is occurring within the galaxies embedded in these structures, which are the likely sources of the elevated ionizing radiation powering the observed Lyman-α emission. Our observations map the gas in filamentary structures of the type thought to fuel the growth of galaxies and black holes in massive protoclusters.


2018 ◽  
Vol 14 (S344) ◽  
pp. 280-282
Author(s):  
Megan C. Johnson ◽  
Kristen B. W. McQuinn ◽  
John Cannon ◽  
Charlotte Martinkus ◽  
Evan Skillman ◽  
...  

AbstractStarbursts are finite periods of intense star formation (SF) that can dramatically impact the evolutionary state of a galaxy. Recent results suggest that starbursts in dwarf galaxies last longer and are distributed over more of the galaxy than previously thought, with star formation efficiencies (SFEs) comparable to spiral galaxies, much higher than those typical of non-bursting dwarfs. This difference might be explainable if the starburst mode is externally triggered by gravitational interactions with other nearby systems. We present new, sensitive neutral hydrogen observations of 18 starburst dwarf galaxies, which are part of the STARburst IRregular Dwarf Survey (STARBIRDS) and each were mapped with the Green Bank Telescope (GBT) and/or Parkes Telescope in order to study the low surface brightness gas distributions, a common tracer for tidal interactions.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 261-262
Author(s):  
Antonino Cucchiara ◽  
Mark Rafelski ◽  
Michele Fumagalli ◽  
Daniel Kocevski ◽  
Jason X. Prochaska ◽  
...  

AbstractMore than 60 GRBs at z ≳ 1.5 reside in the vicinity of dense, cold gas as probed by the measured neutral hydrogen via afterglow absorption spectroscopy. We present the largest sample of GRB-DLAs to date in comparison with a sample of DLAs along quasars: the metallicity of the GRB hosts represents a unique tool to understand if this particular subset of galaxies can be the key ingredient for GRB formation (and massive stars) at any redshift as well as the overall cosmic star-formation rate. We show that GRB-DLAs live in a metal enriched environment, especially at z ≳ 4, likely the result of recent intense star formation and/or SNe episodes. We also derive that our metallicity measurements are broadly consistent with a mild metallicity bias for the GRB formation.


2014 ◽  
Vol 1 (1) ◽  
pp. 84-89
Author(s):  
Eleonora Sani

Two main physical processes characterize the activity in the nuclear region of active galaxies: an intense star formation (starburst, SB) and an Active Galactic Nucleus (AGN). While the existence of a starburst-AGN connection is undisputed, still it is not clear which process dominates the energetic output in both local and high redshift Universe. Moreover there is no consensus on whether AGN fueling is synchronous with star formation or follows it during a post-starburst phase. Here I first review how to disentangle the relative SB-AGN contribution, then I focus on the physical and geometrical properties of the circumnuclear environment.


Sign in / Sign up

Export Citation Format

Share Document