scholarly journals The Hubble Space Telescope Key Project to Measure the Hubble Constant

1999 ◽  
Vol 183 ◽  
pp. 17-30 ◽  
Author(s):  
Wendy L. Freedman ◽  
Jeremy R. Mould ◽  
Robert C. Kennicutt ◽  
Barry F. Madore

A Joint Discussion on the extragalactic distance scale and the Hubble constant took place fifteen years ago, at the 1982 XVIIIth General Assembly of the IAU, held in Patras, Greece. At that time, the newest applications of infrared photometers to Tully-Fisher measurements (Aaronson 1983) and Cepheid distances (Madore 1983) were reported. CCDs were just coming into use and had not yet been applied to extragalactic distance determinations; all of the extragalactic Cepheid distances were based on photographic Argelander (eye-estimated) photometry (Tammann and Sandage 1983 and references therein). No Cepheid distances to type Ia supernova-host galaxies were available.

1989 ◽  
Vol 111 ◽  
pp. 169-176
Author(s):  
Jeremy Mould

For three quarters of a century pulsating variable stars have lain at the foundation of the extragalactic distance scale. The construction of larger telescopes, advances in detector technology, hard work by observers, and our understanding of stellar structure have all contributed to the expansion of the realm of the Cepheids to the distance of M101. Now, with the advent of Hubble Space Telescope (HST), we can look forward to the detection of Cepheids in the Virgo cluster and the removal of much of the remaining uncertainty in the Hubble constant.


2009 ◽  
Vol 5 (H15) ◽  
pp. 1-16 ◽  
Author(s):  
W. L. Freedman ◽  
R. C. Kennicutt ◽  
J. R. Mould

AbstractTen years ago our team completed the Hubble Space Telescope Key Project on the extragalactic distance scale. Cepheids were detected in some 25 galaxies and used to calibrate four secondary distance indicators that reach out into the expansion field beyond the noise of galaxy peculiar velocities. The result was H0 = 72 ± 8 km s−1 Mpc−1 and put an end to galaxy distances uncertain by a factor of two. This work has been awarded the Gruber Prize in Cosmology for 2009.


2020 ◽  
Vol 496 (3) ◽  
pp. 3270-3280
Author(s):  
E Mörtsell ◽  
J Johansson ◽  
S Dhawan ◽  
A Goobar ◽  
R Amanullah ◽  
...  

ABSTRACT In 2016, the first strongly lensed Type Ia supernova (SN Ia), iPTF16geu, at redshift z = 0.409 with four resolved images arranged symmetrically around the lens galaxy at z = 0.2163, was discovered. Here, refined observations of iPTF16geu, including the time delay between images, are used to decrease uncertainties in the lens model, including the the slope of the projected surface density of the lens galaxy, Σ ∝ r1 − η, and to constrain the universal expansion rate H0. Imaging with Hubble Space Telescope provides an upper limit on the slope η, in slight tension with the steeper density profiles indicated by imaging with Keck after iPTF16geu had faded, potentially due to dust extinction not corrected for in host galaxy imaging. Since smaller η implies larger magnifications, we take advantage of the standard candle nature of SNe Ia constraining the image magnifications, to obtain an independent constraint of the slope. We find that a smooth lens density fails to explain the iPTF16geu fluxes, regardless of the slope, and additional substructure lensing is needed. The total probability for the smooth halo model combined with star microlensing to explain the iPTF16geu image fluxes is maximized at 12 per cent for η ∼ 1.8, in excellent agreement with Keck high-spatial-resolution data, and flatter than an isothermal halo. It also agrees perfectly with independent constraints on the slope from lens velocity dispersion measurements. Combining with the observed time delays between the images, we infer a lower bound on the Hubble constant, $H_0 \gtrsim 40\, {\rm km \ s^{-1} Mpc^{-1}}$, at 68.3 per cent confidence level.


1994 ◽  
Vol 428 ◽  
pp. 143 ◽  
Author(s):  
Shaun M. G. Hughes ◽  
Peter B. Stetson ◽  
Anne Turner ◽  
Robert C., Jr. Kennicutt ◽  
Robert Hill ◽  
...  

1996 ◽  
Vol 463 ◽  
pp. 26 ◽  
Author(s):  
Daniel D. Kelson ◽  
Garth D. Illingworth ◽  
Wendy F. Freedman ◽  
John A. Graham ◽  
Robert Hill ◽  
...  

2014 ◽  
Vol 439 (2) ◽  
pp. 1959-1979 ◽  
Author(s):  
P. A. Mazzali ◽  
M. Sullivan ◽  
S. Hachinger ◽  
R. S. Ellis ◽  
P. E. Nugent ◽  
...  

1999 ◽  
Vol 183 ◽  
pp. 31-47
Author(s):  
G. A. Tammann

A linearity test shows H0 to decrease by 7% out to 18 000 km s–1. The value at 10 000 km s–1 is a good approximation to the mean value of H0 over very large scales. The construction of the extragalactic distance scale is discussed. Field galaxies, cluster distances relative to Virgo, and blue supernovae of type Ia yield H0 (cosmic) with increasing weight; they give consistently H0 = 57 ± 7 (external error). This value is supported by purely physical distance determinations (SZ effect, gravitational lenses, MWB fluctuations). Arguments for H0 > 70 are discussed and shown to be flawed.


Sign in / Sign up

Export Citation Format

Share Document