hubble constant
Recently Published Documents


TOTAL DOCUMENTS

762
(FIVE YEARS 265)

H-INDEX

71
(FIVE YEARS 20)

Author(s):  
Rabinarayan Swain ◽  
Priyasmita Panda ◽  
Hena Priti Lima ◽  
Bijayalaxmi Kuanar ◽  
Biswajit Dalai

Detection of Gravitational waves opened a new path for cosmological study in a new approach. From the detection of gravitational waves signal by advanced LIGO, its research climbed the peak. After the collaboration of LIGO and Virgo, several observations get collected from different sources of binary systems like black holes, binary neutron stars even both binary black hole and neutron star. The rigorous detection of gravitational signals may provide an additional thrust in the study of complex binary systems, dark matter, dark energy, Hubble constant, etc. In this review paper, we went through multiple research manuscripts to analyze gravitational wave signals. Here we have reviewed the history and current situation of gravitational waves detection, and we explained the concept and process of detection. Also, we go through different parts of a detector and their working. Then multiple gravitational wave signals are focused, originated from various sources and then found correlation between them. From this, the contribution of gravitational waves in different fields like complex binary systems (black holes, neutron stars), dark matter, dark energy and Hubble Constant have been discussed in this manuscript.


2022 ◽  
Vol 2022 (01) ◽  
pp. 022
Author(s):  
Nina K. Stein ◽  
William H. Kinney

Abstract We calculate high-precision constraints on Natural Inflation relative to current observational constraints from Planck 2018 + BICEP/Keck(BK15) Polarization + BAO on r and n S, including post-inflationary history of the universe. We find that, for conventional post-inflationary dynamics, Natural Inflation with a cosine potential is disfavored at greater than 95% confidence out by current data. If we assume protracted reheating characterized by w̅>1/3, Natural Inflation can be brought into agreement with current observational constraints. However, bringing unmodified Natural Inflation into the 68% confidence region requires values of T re below the scale of electroweak symmetry breaking. The addition of a SHOES prior on the Hubble Constant H 0 only worsens the fit.


2022 ◽  
Vol 924 (1) ◽  
pp. 2
Author(s):  
Simon Birrer ◽  
Suhail Dhawan ◽  
Anowar J. Shajib

Abstract The dominant uncertainty in the current measurement of the Hubble constant (H 0) with strong gravitational lensing time delays is attributed to uncertainties in the mass profiles of the main deflector galaxies. Strongly lensed supernovae (glSNe) can provide, in addition to measurable time delays, lensing magnification constraints when knowledge about the unlensed apparent brightness of the explosion is imposed. We present a hierarchical Bayesian framework to combine a data set of SNe that are not strongly lensed and a data set of strongly lensed SNe with measured time delays. We jointly constrain (i) H 0 using the time delays as an absolute distance indicator, (ii) the lens model profiles using the magnification ratio of lensed and unlensed fluxes on the population level, and (iii) the unlensed apparent magnitude distribution of the SN population and the redshift–luminosity relation of the relative expansion history of the universe. We apply our joint inference framework on a future expected data set of glSNe and forecast that a sample of 144 glSNe of Type Ia with well-measured time series and imaging data will measure H 0 to 1.5%. We discuss strategies to mitigate systematics associated with using absolute flux measurements of glSNe to constrain the mass density profiles. Using the magnification of SN images is a promising and complementary alternative to using stellar kinematics. Future surveys, such as the Rubin and Roman observatories, will be able to discover the necessary number of glSNe, and with additional follow-up observations, this methodology will provide precise constraints on mass profiles and H 0.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Vivian Poulin ◽  
Tristan L. Smith ◽  
Alexa Bartlett

Author(s):  
Xiaoyue Cao ◽  
Ran Li ◽  
James Nightingale ◽  
Richard Massey ◽  
Andrew Robertson ◽  
...  

Abstract The elliptical power-law (EPL) mass model of the mass in a galaxy is widely used in strong gravitational lensing analyses. However, the distribution of mass in real galaxies is more complex. We quantify the biases due to this model mismatch by simulating and then analysing mock {\it Hubble Space Telescope} imaging of lenses with mass distributions inferred from SDSS-MaNGA stellar dynamics data. We find accurate recovery of source galaxy morphology, except for a slight tendency to infer sources to be more compact than their true size. The Einstein radius of the lens is also robustly recovered with 0.1\% accuracy, as is the global density slope, with 2.5\% relative systematic error, compared to the 3.4\% intrinsic dispersion. However, asymmetry in real lenses also leads to a spurious fitted `external shear' with typical strength, $\gamma_{\rm ext}=0.015$. Furthermore, time delays inferred from lens modelling without measurements of stellar dynamics are typically underestimated by $\sim$5\%. Using such measurements from a sub-sample of 37 lenses would bias measurements of the Hubble constant $H_0$ by $\sim$9\%. The next generation cosmography must use more complex lens mass models.


2021 ◽  
Vol 923 (2) ◽  
pp. 279
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
...  

2021 ◽  
Vol 923 (2) ◽  
pp. 157
Author(s):  
Abigail J. Lee ◽  
Wendy L. Freedman ◽  
Barry F. Madore ◽  
Kayla A. Owens ◽  
In Sung Jang

Abstract The recently developed J-region asymptotic giant branch (JAGB) method has extraordinary potential as an extragalactic standard candle, capable of calibrating the absolute magnitudes of locally accessible Type Ia supernovae, thereby leading to an independent determination of the Hubble constant. Using Gaia Early Data Release 3 (EDR3) parallaxes, we calibrate the zero-point of the JAGB method, based on the mean luminosity of a color-selected subset of carbon-rich AGB stars. We identify Galactic carbon stars from the literature and use their near-infrared photometry and Gaia EDR3 parallaxes to measure their absolute J-band magnitudes. Based on these Milky Way parallaxes we determine the zero-point of the JAGB method to be M J = −6.14 ± 0.05 (stat) ± 0.11 (sys) mag. This Galactic calibration serves as a consistency check on the JAGB zero-point, agreeing well with previously published, independent JAGB calibrations based on geometric, detached eclipsing binary distances to the LMC and SMC. However, the JAGB stars used in this study suffer from the high parallax uncertainties that afflict the bright and red stars in EDR3, so we are not able to attain the higher precision of previous calibrations, and ultimately will rely on future improved DR4 and DR5 releases.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Paul Shah ◽  
Pablo Lemos ◽  
Ofer Lahav

AbstractSince the expansion of the universe was first established by Edwin Hubble and Georges Lemaître about a century ago, the Hubble constant $$H_0$$ H 0 which measures its rate has been of great interest to astronomers. Besides being interesting in its own right, few properties of the universe can be deduced without it. In the last decade, a significant gap has emerged between different methods of measuring it, some anchored in the nearby universe, others at cosmological distances. The SH0ES team has found $$H_0 = 73.2 \pm 1.3 \; \;\,\hbox {kms}^{-1} \,\hbox {Mpc}^{-1}$$ H 0 = 73.2 ± 1.3 kms - 1 Mpc - 1 locally, whereas the value found for the early universe by the Planck Collaboration is $$H_0 = 67.4 \pm 0.5 \; \;\,\hbox {kms}^{-1} \,\hbox {Mpc}^{-1}$$ H 0 = 67.4 ± 0.5 kms - 1 Mpc - 1 from measurements of the cosmic microwave background. Is this gap a sign that the well-established $${\varLambda} {\text{CDM}}$$ Λ CDM cosmological model is somehow incomplete? Or are there unknown systematics? And more practically, how should humble astronomers pick between competing claims if they need to assume a value for a certain purpose? In this article, we review results and what changes to the cosmological model could be needed to accommodate them all. For astronomers in a hurry, we provide a buyer’s guide to the results, and make recommendations.


2021 ◽  
Vol 2021 (12) ◽  
pp. 017
Author(s):  
Rong-Gen Cai ◽  
Tao Yang

Abstract Atom interferometers (AIs) as gravitational-wave (GW) detectors have been proposed a decade ago. Both ground and space-based projects will be in construction and preparation in the near future. In this paper, for the first time, we investigate the potential of the space-borne AIs on detecting GW standard sirens and hence the applications on cosmology. We consider AEDGE as our fiducial AI GW detector and estimate the number of bright sirens that would be obtained within a 5-years data-taking period of GW and with the follow-up observation of electromagnetic (EM) counterparts. We then construct the mock catalogue of bright sirens and predict their ability on constraining cosmological parameters such as the Hubble constant, dynamics of dark energy, and modified gravity theory. Our preliminary results show around order 𝒪 (30) bright sirens can be obtained from a 5-years operation time of AEDGE and the follow-up observation of EM counterparts. The bright sirens alone can measure H 0 with a precision 2.1%, which is sufficient to arbitrate the Hubble tension. Combining current most precise electromagnetic experiments, the inclusion of AEDGE bright sirens can improve the measurement of the equation of state of dark energy, though marginally. Moreover, by modifying GW propagation on cosmological scales, the deviations from general relativity (modified gravity theory effects) can be constrained at 5.7% precision level.


2021 ◽  
Vol 66 (11) ◽  
pp. 955
Author(s):  
S.L. Parnovsky

The bias in the determination of the Hubble parameter and the Hubble constant in the modern Universe is discussed. It could appear due to the statistical processing of data on the redshifts of galaxies and the estimated distances based on some statistical relations with limited accuracy. This causes a number of effects leading to either underestimation or overestimation of the Hubble parameter when using any methods of statistical processing, primarily the least squares method (LSM). The value of the Hubble constant is underestimated when processing a whole sample; when the sample is constrained by distance, especially when constrained from above. Moreover, it is significantly overestimated due to the data selection. The bias significantly exceeds the values of the erro ofr the Hubble constant calculated by the LSM formulae. These effects are demonstrated both analytically and using Monte Carlo simulations, which introduce deviations in the velocities and estimated distances to the original dataset described by the Hubble law. The characteristics of the deviations are similar to real observations. Errors in the estimated distances are up to 20%. They lead to the fact that, when processing the same mock sample using LSM, it is possible to obtain an estimate of the Hubble constant from 96% of the true value when processing the entire sample to 110% when processing the subsample with distances limited from above. The impact of these effects can lead to a bias in the Hubble constant obtained from real data and an overestimation of the accuracy of determining this value. This may call into question the accuracy of determining the Hubble constant and can significantly reduce the tension between the values obtained from the observations in the early and modern Universes, which were actively discussed during the last year.


Sign in / Sign up

Export Citation Format

Share Document