scholarly journals Colliding stellar winds: magnetic field structure in the interaction region

1999 ◽  
Vol 193 ◽  
pp. 400-401
Author(s):  
Svetozar A. Zhekov ◽  
A.V. Myasnikov ◽  
E.V. Barsky

The geometry structure of the magnetic field in colliding stellar winds is studied. It is shown that the magnetic field influence in the interaction region depends mainly on the ratio of the wind ram pressures of the components, the ratio of the stellar linear rotational velocity to the wind velocity of the magnetized star, and the stellar separation. For the radiative colliding winds the magnetic field influence increases with the importance of the radiative losses. An asymmetric magnetic field structure appears for a given set of binary parameters and the interaction region might be an asymmetric source of non-thermal radio emission.

1987 ◽  
Vol 92 ◽  
pp. 82-83 ◽  
Author(s):  
C. T. Bolton ◽  
A. W. Fullerton ◽  
D. Bohlender ◽  
J. D. Landstreet ◽  
D. R. Gies

Over the past two years, we have obtained high resolution high signal/noise (S/N) spectra of the magnetic Be star σ Ori E at the Canada-France-Hawaii Telescope and McDonald Observatory. These spectra, which cover the spectral regions 399-417.5 and 440-458.5 nm and the Hα line and have typical S/N>200 and spectral resolution ≃0.02 nm, were obtained at a variety of rotational phases in order to study the magnetic field structure, the distribution of elements in the photosphere, and the effects of the magnetic field on the emission envelope. Our analysis of these spectra confirms, refines and extends the results obtained by Landstreet & Borra (1978), Groote & Hunger (1982 and references therein), and Nakajima (1985).The Hα emission is usually double-peaked, but it undergoes remarkable variations with the 1.19081 d rotational period of the star, which show that the emitting gas is localized into two regions which co-rotate with the star.


Sign in / Sign up

Export Citation Format

Share Document