stellar winds
Recently Published Documents


TOTAL DOCUMENTS

912
(FIVE YEARS 76)

H-INDEX

57
(FIVE YEARS 6)

Galaxies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Amit Kashi ◽  
Amir Michaelis

We run a numerical experiment ejecting stellar winds in a very massive binary system measuring the properties of the resulting colliding wind structure and accreted mass onto the companion under different conditions. Colliding massive binaries interact and create a colliding wind structure with a shape that depends on the momentum ratio, orbital motion, distance between the stars, and other factors. We run simulations of a static LBV-WR binary and in each simulation abruptly varying the mass loss rate of the LBV from the fiducial value. The modified wind front propagates and interacts with the previous colliding wind structure, and modifies its shape. We calculate the emitted X-ray from the interaction and investigate the proprieties of the new shape. We derive the mass accretion rate onto the secondary, and find that it depends on the momentum ratio of the winds. We then add orbital velocity that reduces the mass accretion rate, a similar behaviour as the analytical estimates based on modified Bondi–Hoyle–Lyttleton. Creating a large set of simulations like those presented here can allow constraining parameters for specific colliding wind binaries and derive their stellar parameters and orbital solution.


2021 ◽  
Vol 162 (6) ◽  
pp. 284
Author(s):  
J. J. Spake ◽  
A. Oklopčić ◽  
L. A. Hillenbrand

Abstract Understanding the effects of high-energy radiation and stellar winds on planetary atmospheres is vital for explaining the observed properties of close-in exoplanets. Observations of transiting exoplanets in the triplet of metastable helium lines at 10830 Å allow extended atmospheres and escape processes to be studied for individual planets. We observed one transit of WASP-107b with NIRSPEC on Keck at 10830 Å. Our observations, for the first time, had significant posttransit phase coverage, and we detected excess absorption for over an hour after fourth contact. The data can be explained by a comet-like tail extending out to ∼7 planet radii, which corresponds to roughly twice the Roche lobe radius of the planet. Planetary tails are expected based on three-dimensional simulations of escaping exoplanet atmospheres, particularly those including the interaction between the escaped material and strong stellar winds, and have been previously observed at 10830 Å in at least one other exoplanet. With both the largest midtransit absorption signal and the most extended tail observed at 10830 Å, WASP-107b remains a keystone exoplanet for atmospheric escape studies.


Author(s):  
Judy J. Chebly ◽  
Julián D. Alvarado‐Gómez ◽  
Katja Poppenhaeger
Keyword(s):  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012013
Author(s):  
D V Badmaev ◽  
A M Bykov

Abstract The fast stellar winds of massive stars, along with supernovae, determine the dynamics within the star-forming regions. Within a compact star cluster, counterpropagating supersonic MHD shock flows associated with winds and supernova remnants can provide favorable conditions for efficient Fermi I particle acceleration up to energies > 10 PeV over a short timescale of several hundred years. To model the nonthermal spectra of such systems it is necessary to know the complex structure of colliding supersonic flows. In this paper using the PLUTO code we study on a subparsec scale a 2D MHD model of the collision of a core-collapse supernova remnant with a magnetized wind of a hot rotating O-star. As a result the detailed high resolution (~ 10−4 pc) maps of density, magnetic field, and temperature during the the wind - supernova shell interaction are presented.


2021 ◽  
Vol 922 (1) ◽  
pp. L3
Author(s):  
Lachlan Lancaster ◽  
Eve C. Ostriker ◽  
Jeong-Gyu Kim ◽  
Chang-Goo Kim

Abstract Stellar winds contain enough energy to easily disrupt the parent cloud surrounding a nascent star cluster, and for this reason they have long been considered candidates for regulating star formation. However, direct observations suggest most wind power is lost, and Lancaster et al. recently proposed that this is due to efficient mixing and cooling processes. Here we simulate star formation with wind feedback in turbulent, self-gravitating clouds, extending our previous work. Our simulations cover clouds with an initial surface density of 102–104 M ⊙ pc−2 and show that star formation and residual gas dispersal are complete within two to eight initial cloud freefall times. The “efficiently cooled” model for stellar wind bubble evolution predicts that enough energy is lost for the bubbles to become momentum-driven; we find that this is satisfied in our simulations. We also find that wind energy losses from turbulent, radiative mixing layers dominate losses by “cloud leakage” over the timescales relevant for star formation. We show that the net star formation efficiency (SFE) in our simulations can be explained by theories that apply wind momentum to disperse cloud gas, allowing for highly inhomogeneous internal cloud structure. For very dense clouds, the SFE is similar to those observed in extreme star-forming environments. Finally, we find that, while self-pollution by wind material is insignificant in cloud conditions with moderate density (only ≲10−4 of the stellar mass originated in winds), our simulations with conditions more typical of a super star cluster have star particles that form with as much as 1% of their mass in wind material.


2021 ◽  
Vol 508 (2) ◽  
pp. 1768-1776
Author(s):  
J M Pittard ◽  
C J Wareing ◽  
M M Kupilas

ABSTRACT Stellar winds are one of several ways that massive stars can affect the star formation process on local and galactic scales. In this paper, we investigate the numerical resolution needed to inflate an energy-driven stellar wind bubble in an external medium. We find that the radius of the wind injection region, rinj, must be below a maximum value, rinj,max, in order for a bubble to be produced, but must be significantly below this value if the bubble properties are to closely agree with analytical predictions. The final bubble momentum is within 25 per cent of the value from a higher resolution reference model if χ = rinj/rinj,max = 0.1. Our work has significance for the amount of radial momentum that a wind-blown bubble can impart to the ambient medium in simulations, and thus on the relative importance of stellar wind feedback.


Author(s):  
D M-A Meyer

Abstract Wolf-Rayet stars are amongst the rarest but also most intriguing massive stars. Their extreme stellar winds induce famous multi-wavelength circumstellar gas nebulae of various morphologies, spanning from circles and rings to bipolar shapes. This study is devoted to the investigation of the formation of young, asymmetric Wolf-Rayet gas nebulae and we present a 2.5-dimensional magneto-hydrodynamical toy model for the simulation of Wolf-Rayet gas nebulae generated by wind-wind interaction. Our method accounts for stellar wind asymmetries, rotation, magnetisation, evolution and mixing of materials. It is found that the morphology of the Wolf-Rayet nebulae of blue supergiant ancestors is tightly related to the wind geometry and to the stellar phase transition time interval, generating either a broadened peanut-like or a collimated jet-like gas nebula. Radiative transfer calculations of our Wolf-Rayet nebulae for dust infrared emission at $24\, \mu \rm m$ show that the projected diffuse emission can appear as oblate, bipolar, ellipsoidal or ring structures. Important projection effects are at work in shaping observed Wolf-Rayet nebulae. This might call a revision of the various classifications of Wolf-Rayet shells, which are mostly based on their observed shape. Particularly, our models question the possibility of producing pre-Wolf-Rayet wind asymmetries, responsible for bipolar nebulae like NGC 6888, within the single red supergiant evolution channel scenario. We propose that bipolar Wolf-Rayet nebulae can only be formed within the red supergiant scenario by multiple/merged massive stellar systems, or by single high-mass stars undergoing additional, e.g. blue supergiant, evolutionary stages prior to the Wolf-Rayet phase.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 277
Author(s):  
Maxim V. Barkov ◽  
Valenti Bosch-Ramon

Binary systems that host a massive star and a non-accreting pulsar can be powerful non-thermal emitters. The relativistic pulsar wind and the non-relativistic stellar outflows interact along the orbit, producing ultrarelativistic particles that radiate from radio to gamma rays. To properly characterize the physics of these sources, and better understand their emission and impact on the environment, careful modeling of the outflow interactions, spanning a broad range of spatial and temporal scales, is needed. Full three-dimensional approaches are very computationally expensive, but simpler approximate approaches, while still realistic at the semi-quantitative level, are available. We present here the results of calculations done with a quasi three-dimensional scheme to compute the evolution of the interacting flows in a region spanning in size up to a thousand times the size of the binary. In particular, we analyze for the first time the role of different eccentricities in the large scale evolution of the shocked flows. We find that the higher the eccentricity, the closer the flows behave like a one-side outflow, which becomes rather collimated for eccentricity values ≳0.75. The simulations also unveil that the pulsar and the stellar winds become fully mixed within the grid for low eccentricity systems, presenting a more stochastic behavior at large scales than in the highly eccentric systems.


2021 ◽  
Author(s):  
Donna Rodgers-Lee ◽  
Aline Vidotto ◽  
Amanda Mesquita

<p>Galactic cosmic rays are important for exoplanetary atmospheres. They can contribute to the formation of hazes, prebiotic molecules and atmospheric electrical circuits. A number of so-called fingerprint ions, such as oxonium, have been identified from chemical modelling which are thought to be signatures of ionisation by energetic particles, such as Galactic cosmic rays. These fingerprint ions may be observed in exoplanetary atmospheres with upcoming JWST observations.</p> <p>I will discuss our recent results that model the propagation of Galactic cosmic rays through the stellar winds of a number of nearby solar-type stars. Our sample comprises of 5 well-observed solar-type stars that we have constructed well-constrained stellar wind models for. This allows us to calculate the transport of Galactic cosmic rays through these systems. I will present our results of the Galactic cosmic ray fluxes that reach (a) the habitable zone and (b) the location of known exoplanets. The systems show a variety of behaviour and I will discuss the most promising systems for upcoming JWST observations. </p>


2021 ◽  
Vol 913 (2) ◽  
pp. 130
Author(s):  
Laura M. Harbach ◽  
Sofia P. Moschou ◽  
Cecilia Garraffo ◽  
Jeremy J. Drake ◽  
Julián D. Alvarado-Gómez ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document