scholarly journals Near Infrared Photometry of New Galactic Globular Clusters GC 01 and GC 02

2002 ◽  
Vol 207 ◽  
pp. 107-109 ◽  
Author(s):  
J. Borissova ◽  
V. D. Ivanov ◽  
L. Vanzi

We present a preliminary report on the first deep near infrared photometry of 2MASS GC 01 and 2MASS GC 02 - new Galactic globular cluster candidates, discovered by the 2MASS. The red giant branch slopes yielded [Fe/H]=-0.42 ± 0.15 dex and [Fe/H]=-0.66 ± 0.17 dex, respectively for GC 01 and GC 02. We estimated the reddening towards GC 01 and GC 02: E(B - V) = 5.36 ± 0.20, and E(B - V) = 4.55 ± 0.17. The calculated distance moduli to the clusters are: (m - M)0 = 13.53 ± 0.27 and (m - M)0 = 14.53 ± 0.31 for GC 01 and GC 02. Our best fit for the radial surface brightness profile of GC 02 yields: lg(rc) = 1.40, lg(rh) = 1.54, lg(rt) = 1.31, and c=1.60. CC 01 is less concentrated: lg(rc) = 1.63, lg(rh) = 1.7, lg(rt) = 1.25, and c=1.41.

2015 ◽  
Vol 150 (6) ◽  
pp. 176 ◽  
Author(s):  
Roger E. Cohen ◽  
Maren Hempel ◽  
Francesco Mauro ◽  
Douglas Geisler ◽  
Javier Alonso-Garcia ◽  
...  

2017 ◽  
Vol 13 (S334) ◽  
pp. 25-28
Author(s):  
Bruno Dias ◽  
Beatriz Barbuy ◽  
Ivo Saviane ◽  
Enrico V. Held ◽  
Gary Da Costa ◽  
...  

AbstractMilky Way globular clusters are excellent laboratories for stellar population detailed analysis that can be applied to extragalactic environments with the advent of the 40m-class telescopes like the ELT. The globular cluster population traces the early evolution of the Milky Way which is the field of Galactic archaeology. We present our GlObular clusTer Homogeneous Abundance Measurement (GOTHAM) survey. We derived radial velocities, Teff, log(g), [Fe/H], [Mg/Fe] for red giant stars in one third of all Galactic globular clusters that represent well the Milky Way globular cluster system in terms of metallicity, mass, reddening, and distance. Our method is based on low-resolution spectroscopy and is intrinsically reddening free and efficient even for faint stars. Our [Fe/H] determinations agree with high-resolution results to within 0.08 dex. The GOTHAM survey provides a new metallicity scale for Galactic globular clusters with a significant update of metallicities higher than [Fe/H] > -0.7. We show that the trend of [Mg/Fe] with metallicity is not constant as previously found, because now we have more metal-rich clusters. Moreover, peculiar clusters whose [Mg/Fe] does not match Galactic stars for a given metallicity are discussed. We also measured the CaII triplet index for all stars and we show that the different chemical evolution of Milky Way open clusters, field stars, and globular clusters implies different calibrations of calcium triplet to metallicity.


2002 ◽  
Vol 207 ◽  
pp. 152-153
Author(s):  
Wolfgang Brandner ◽  
R. Brent Tully ◽  
James N. Heasley

We have observed the M31 globular clusters with the University of Hawaii Adaptive Optics System Hokupa'a at the Gemini North 8m telescope on Mauna Kea. This is part of a project which aims at spatially resolving intermediate-age and old-age stellar populations in the Local Volume and beyond - possibly out to distances of the Virgo and Fornax clusters. The sparse M31 globular cluster G27 (Hubble 6) is for the first time resolved into individual stars. The tip of the red giant branch (TRGB) at K≈18.8mag yields a metallicity of Z around 0.001 solar for G27.


2019 ◽  
Vol 14 (S351) ◽  
pp. 309-311
Author(s):  
Edgaras Kolomiecas ◽  
Vidas Dobrovolskas ◽  
Arūnas Kučinskas

AbstractWe determined zirconium abundance in the atmospheres of 327 red giant branch (RGB) stars in the globular cluster 47 Tuc. The 1D LTE abundances were obtained from the archival VLT GIRAFFE spectra, using 1D hydrostaticATLAS9 stellar model atmospheres and synthetic Zr I line profiles computed with theSYNTHE package. The average zirconium abundance determined in the sample of RGB stars, 〈[Zr/Fe]〉 = +0.38 ± 0.12, agrees well with zirconium abundances obtained at this metallicity in the Galactic field stars, as well as with those observed in other Galactic globular clusters.


1997 ◽  
Vol 189 ◽  
pp. 193-202
Author(s):  
G. S. Da Costa

The galactic globular clusters presumably formed rapidly as high density concentrations at the centres of extensive star forming regions and the natural expectation is that they will be chemically homogeneous. In general, this is confirmed by observation — most globular clusters are extremely homogeneous with regard to most elements. (There are two exceptions: ω Cen and M22 both have intrinsic internal abundance ranges. While of considerable interest, e.g. Norris et al. 1996, this type of “abundance anomaly” will not be discussed here). But we have known for more than twenty years that the surface abundances, which are what we observe, of elements such as C, N and O can vary substantially from red giant to red giant within an individual globular cluster. Indeed it has become clear that “abundance anomalies” of this type are common in the galactic globular cluster population. Briefly, the observed anomalies can be summarized as: (i) the “anomalous” stars are depleted in C and enhanced in N. Depletions of O also often accompany the depletions in C. (ii) The C, N and O variations are usually accompanied by enhancements of Na and Al and when the O depletion and the Al enhancement are both large, Mg is depleted. No other elements, including r- and s-process indicators, vary.


2001 ◽  
Vol 122 (6) ◽  
pp. 3136-3154 ◽  
Author(s):  
Jae-Woo Lee ◽  
Bruce W. Carney ◽  
Laura K. Fullton ◽  
Peter B. Stetson

2014 ◽  
Vol 565 ◽  
pp. A8 ◽  
Author(s):  
A. Calamida ◽  
G. Bono ◽  
E. P. Lagioia ◽  
A. P. Milone ◽  
M. Fabrizio ◽  
...  

1973 ◽  
Vol 21 ◽  
pp. 164-177
Author(s):  
Robert F. Wing

AbstractFourteen red variables in the southern globular clusters 47 Tuc, ω Cen, and NGC 362 have been observed on an eight-color system of narrow-band photometry in the near infrared. Temperatures are derived from blackbody fits to the calibrated fluxes, and spectral types are given for the M stars. The types observed for the three Mira variables in 47 Tuc range from M3.1 to M7.5; two small-range variables in the same cluster are later than M4. The variables in ω Cen are mostly earlier than K5, but spectra of types M3 and MO were also encountered among radial-velocity members. In both the metal-rich 47 Tuc and the metal-poor ω Cen, the relation between TiO band strength and temperature is approximately normal. Several of these stars fall well above or below the red giant branches of their clusters in diagrams of infrared magnitude against temperature. Comparisons are made with recent results obtained at Radcliffe Observatory on some of the same stars.


Sign in / Sign up

Export Citation Format

Share Document