chemical evolution
Recently Published Documents


TOTAL DOCUMENTS

2445
(FIVE YEARS 268)

H-INDEX

100
(FIVE YEARS 14)

2022 ◽  
Vol 9 ◽  
Author(s):  
Ziv Sade ◽  
Shahar Hegyi ◽  
Itay Halevy

Equilibration times of dissolved inorganic carbon (DIC) depend on conversion reactions between CO2(aq) and the dissociation products of carbonic acid [S = (H2CO3) + (HCO3−) + (CO32−)]. Here, we develop analytical equations and a numerical model to calculate chemical equilibration times of DIC during pH transitions in buffered and unbuffered solutions. We approximate the equilibration degree of the DIC reservoir by the smaller of the CO2(aq) and S pools at the new pH, since the smaller pool is always farther from equilibrium during the chemical evolution. Both the amount of DIC converted and the rate of conversion differ between a pH increase and decrease, leading to distinct equilibration times for these general cases. Alkalinity perturbations in unbuffered solutions initially drive pH overshoots (increase or decrease) relative to the new equilibrium pH. The increased rates of DIC conversion associated with the pH overshoot yield shorter equilibration times compared to buffered solutions. Salinity has opposing effects on buffered and unbuffered solutions, decreasing and increasing equilibration times, respectively.


2022 ◽  
Vol 924 (1) ◽  
pp. 29
Author(s):  
Hirokazu Sasaki ◽  
Yuta Yamazaki ◽  
Toshitaka Kajino ◽  
Motohiko Kusakabe ◽  
Takehito Hayakawa ◽  
...  

Abstract We calculate the Galactic Chemical Evolution of Mo and Ru by taking into account the contribution from ν p-process nucleosynthesis. We estimate yields of p-nuclei such as 92,94Mo and 96,98Ru through the ν p-process in various supernova progenitors based upon recent models. In particular, the ν p-process in energetic hypernovae produces a large amount of p-nuclei compared to the yield in ordinary core-collapse SNe. Because of this, the abundances of 92,94Mo and 96,98Ru in the Galaxy are significantly enhanced at [Fe/H] = 0 by the ν p-process. We find that the ν p-process in hypernovae is the main contributor to the elemental abundance of 92Mo at low metallicity [Fe/H] < −2. Our theoretical prediction of the elemental abundances in metal-poor stars becomes more consistent with observational data when the ν p-process in hypernovae is taken into account.


2022 ◽  
Vol 924 (1) ◽  
pp. 10
Author(s):  
Thomas C. L. Trueman ◽  
Benoit Côté ◽  
Andrés Yagüe López ◽  
Jacqueline den Hartogh ◽  
Marco Pignatari ◽  
...  

Abstract Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1–100 Myr existed in the early solar system (ESS). We investigate the ESS origin of 107Pd, 135Cs, and 182Hf, which are produced by slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. We modeled the Galactic abundances of these SLRs using the OMEGA+ galactic chemical evolution (GCE) code and two sets of mass- and metallicity-dependent AGB nucleosynthesis yields (Monash and FRUITY). Depending on the ratio of the mean-life τ of the SLR to the average length of time between the formations of AGB progenitors γ, we calculate timescales relevant for the birth of the Sun. If τ/γ ≳ 2, we predict self-consistent isolation times between 9 and 26 Myr by decaying the GCE predicted 107Pd/108Pd, 135Cs/133Cs, and 182Hf/180Hf ratios to their respective ESS ratios. The predicted 107Pd/182Hf ratio indicates that our GCE models are missing 9%–73% of 107Pd and 108Pd in the ESS. This missing component may have come from AGB stars of higher metallicity than those that contributed to the ESS in our GCE code. If τ/γ ≲ 0.3, we calculate instead the time (T LE) from the last nucleosynthesis event that added the SLRs into the presolar matter to the formation of the oldest solids in the ESS. For the 2 M ⊙, Z = 0.01 Monash model we find a self-consistent solution of T LE = 25.5 Myr.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Chemseddine Ananna ◽  
Francesco Barile ◽  
Axel Boeltzig ◽  
Carlo Giulio Bruno ◽  
Francesca Cavanna ◽  
...  

Nuclear reaction cross sections are essential ingredients to predict the evolution of AGB stars and understand their impact on the chemical evolution of our Galaxy. Unfortunately, the cross sections of the reactions involved are often very small and challenging to measure in laboratories on Earth. In this context, major steps forward were made with the advent of underground nuclear astrophysics, pioneered by the Laboratory for Underground Nuclear Astrophysics (LUNA). The present paper reviews the contribution of LUNA to our understanding of the evolution of AGB stars and related nucleosynthesis.


Author(s):  
Geoff G Murphy ◽  
Robert M Yates ◽  
Shazrene S Mohamed

Abstract We present an analysis of the formation and chemical evolution of stellar haloes around (a) Milky Way Analogue (MWA) galaxies and (b) galaxy clusters in the L-Galaxies 2020 semi-analytic model of galaxy evolution. Observed stellar halo properties are better reproduced when assuming a gradual stripping model for the removal of cold gas and stars from satellites, compared to an instantaneous stripping model. The slope of the stellar mass – metallicity relation for MWA stellar haloes is in good agreement with that observed in the local Universe. This extends the good agreement between L-Galaxies 2020 and metallicity observations from the gas and stars inside galaxies to those outside. Halo stars contribute on average only ∼0.1 per cent of the total circumgalactic medium (CGM) enrichment by z = 0 in MWAs, ejecting predominantly carbon produced by AGB stars. Around a quarter of MWAs have a single ‘significant progenitor’ with a mean mass of ∼ 2.3 × 109M⊙, similar to that measured for Gaia Enceladus. For galaxy clusters, L-Galaxies 2020 shows good correspondence with observations of stellar halo mass fractions, but slightly over-predicts stellar masses. Assuming a Navarro-Frenk-White profile for the stellar halo mass distribution provides the best agreement. On average, the intracluster stellar component (ICS) is responsible for 5.4 per cent of the total intracluster medium (ICM) iron enrichment, exceeding the contribution from the brightest cluster galaxy (BCG) by z = 0. We find that considering gradual stripping of satellites and realistic radial profiles is crucial for accurately modelling stellar halo formation on all scales in semi-analytic models.


mSystems ◽  
2021 ◽  
Author(s):  
Sharon L. Grim ◽  
Alexander A. Voorhies ◽  
Bopaiah A. Biddanda ◽  
Sunit Jain ◽  
Stephen C. Nold ◽  
...  

Cyanobacterial mats are dense communities of microorganisms that contain photosynthetic cyanobacteria along with a host of other bacterial species that play important yet still poorly understood roles in this ecosystem. Although such cyanobacterial mats were critical agents of Earth’s biological and chemical evolution through geological time, little is known about how they function under the low-oxygen conditions that characterized most of their natural history.


Sign in / Sign up

Export Citation Format

Share Document