scholarly journals The chain recurrent set, attractors, and explosions

1985 ◽  
Vol 5 (3) ◽  
pp. 321-327 ◽  
Author(s):  
Louis Block ◽  
John E. Franke

AbstractCharles Conley has shown that for a flow on a compact metric space, a point x is chain recurrent if and only if any attractor which contains the & ω-limit set of x also contains x. In this paper we show that the same statement holds for a continuous map of a compact metric space to itself, and additional equivalent conditions can be given. A stronger result is obtained if the space is locally connected.It follows, as a special case, that if a map of the circle to itself has no periodic points then every point is chain recurrent. Also, for any homeomorphism of the circle to itself, the chain recurrent set is either the set of periodic points or the entire circle. Finally, we use the equivalent conditions mentioned above to show that for any continuous map f of a compact space to itself, if the non-wandering set equals the chain recurrent set then f does not permit Ω-explosions. The converse holds on manifolds.

1991 ◽  
Vol 11 (4) ◽  
pp. 709-729 ◽  
Author(s):  
Mike Hurley

AbstractIn the study of a dynamical systemf:X→Xgenerated by a continuous mapfon a compact metric spaceX, thechain recurrent setis an object of fundamental interest. This set was defined by C. Conley, who showed that it has two rather different looking, but equivalent, definitions: one given in terms of ‘approximate orbits’ through individual points (pseudo-orbits, or ε-chains), and the other given in terms of the global structure of the class of ‘attractors’ and ‘basins of attraction’ off. The first of these definitions generalizes directly to dynamical systems on any metric space, compact or not. The main purpose of this paper is to extend the second definition to non-compact spaces in such a way that it remains equivalent to the first.


2017 ◽  
Vol 39 (5) ◽  
pp. 1261-1274 ◽  
Author(s):  
OLGA BERNARDI ◽  
ANNA FLORIO

For a continuous flow on a compact metric space, the aim of this paper is to prove a Conley-type decomposition of the strong chain recurrent set. We first discuss in detail the main properties of strong chain recurrent sets. We then introduce the notion of strongly stable set as a closed invariant set which is the intersection of the $\unicode[STIX]{x1D714}$-limits of a specific family of nested and definitively invariant neighborhoods of itself. This notion strengthens that of stable set; moreover, any attractor turns out to be strongly stable. We then show that strongly stable sets play the role of attractors in the decomposition of the strong chain recurrent set; indeed, we prove that the strong chain recurrent set coincides with the intersection of all strongly stable sets and their complementary.


2015 ◽  
Vol 25 (09) ◽  
pp. 1550115 ◽  
Author(s):  
Jiandong Yin ◽  
Zuoling Zhou

Let X be a compact metric space and f : X → X be a continuous map. In this paper, ergodic chaos and strongly ergodic chaos are introduced, and it is proven that f is strongly ergodically chaotic if f is transitive but not minimal and has a full measure center. In addition, some sufficient conditions for f to be Ruelle–Takens chaotic are presented. For instance, we prove that f is Ruelle–Takens chaotic if f is transitive and there exists a countable base [Formula: see text] of X such that for each i > 0, the meeting time set N(Ui, Ui) for Ui with respect to itself has lower density larger than [Formula: see text].


2018 ◽  
Vol 28 (08) ◽  
pp. 1850102 ◽  
Author(s):  
Francisco Balibrea ◽  
Jaroslav Smítal ◽  
Marta Štefánková

We consider nonautonomous dynamical systems consisting of sequences of continuous surjective maps of a compact metric space [Formula: see text]. Let [Formula: see text], [Formula: see text] and [Formula: see text] denote the space of systems [Formula: see text], which are uniformly convergent, or equicontinuous, or pointwise convergent (to a continuous map), respectively. We show that for [Formula: see text], the generic system in any of the spaces has infinite topological entropy, while, if [Formula: see text] is the Cantor set, the generic system in any of the spaces has zero topological entropy. This shows, among others, that the general results of the above type for arbitrary compact space [Formula: see text] are difficult if not impossible.


1995 ◽  
Vol 05 (05) ◽  
pp. 1351-1355
Author(s):  
VLADIMIR FEDORENKO

We give a characterization of complex and simple interval maps and circle maps (in the sense of positive or zero topological entropy respectively), formulated in terms of the description of the dynamics of the map on its chain recurrent set. We also describe the behavior of complex maps on their periodic points.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Heng Liu ◽  
Fengchun Lei ◽  
Lidong Wang

Consider the surjective, continuous mapf:X→Xand the continuous mapf¯of𝒦(X)induced byf, whereXis a compact metric space and𝒦(X)is the space of all nonempty compact subsets ofXendowed with the Hausdorff metric. In this paper, we give a short proof that iff¯is Li-Yoke sensitive, thenfis Li-Yorke sensitive. Furthermore, we give an example showing that Li-Yorke sensitivity offdoes not imply Li-Yorke sensitivity off¯.


2019 ◽  
Vol 69 (3) ◽  
pp. 611-624
Author(s):  
Jelena Katić ◽  
Milan Perić

Abstract We adapt the construction from [HAUSEUX, L.—LE ROUX, F.: Polynomial entropy of Brouwer homeomorphisms, arXiv:1712.01502 (2017)] to obtain an easy method for computing the polynomial entropy for a continuous map of a compact metric space with finitely many non-wandering points. We compute the maximal cardinality of a singular set of Morse negative gradient systems and apply this method to compute the polynomial entropy for Morse gradient systems on surfaces.


2012 ◽  
Vol 204-208 ◽  
pp. 4776-4779
Author(s):  
Lin Huang ◽  
Huo Yun Wang ◽  
Hong Ying Wu

By a dynamical system we mean a compact metric space together with a continuous map . This article is devoted to study of invariant scrambled sets. A dynamical system is a periodically adsorbing system if there exists a fixed point and a periodic point such that and are dense in . We show that every topological weakly mixing and periodically adsorbing system contains an invariant and dense Mycielski scrambled set for some , where has no isolated points. A subset is a Myceilski set if it is a countable union of Cantor sets.


1999 ◽  
Vol 59 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Tao Li ◽  
Xiangdong Ye

We generalise a result of Hosaka and Kato by proving that if the set of periodic points of a continuous map of a tree is closed then each chain recurrent point is a periodic one. We also show that the topological entropy of a tree map is zero if and only if thew-limit set of each chain recurrent point (which is not periodic) contains no periodic points.


2005 ◽  
Vol 2005 (2) ◽  
pp. 93-99 ◽  
Author(s):  
Xiao-Song Yang

We present a simpler elementary proof on positive topological entropy of theN-buffer switched flow networks based on a new simple theorem on positive topological entropy of continuous map on compact metric space.


Sign in / Sign up

Export Citation Format

Share Document