Floquet exponents for Jacobi fields

1991 ◽  
Vol 11 (1) ◽  
pp. 41-63
Author(s):  
Walter Craig

AbstractThis paper introduces a Riemannian invariant of a compact Riemannian manifold based on the spectral theory for the Jacobi field operator. It is the Floquet exponent for this operator, a purely dynamical quantity computable directly from the asymptotic behavior of Jacobi fields. We show that it is related to certain traces of the Green's function, and we derive further regularity and analyticity properties for the Green's function. In case the geodesic flow is ergodic, the Floquet exponent generalizes the measure entropy, and several entropy estimates follow. An asymptotic expansion of the Floquet exponent gives rise to a sequence of ‘Jacobi invariants’, which are related to the polynomial invariants of the K dV equation.

Author(s):  
Norman J. Morgenstern Horing

Starting with the equation of motion for the field operator ψ(x,t) of an interacting many-particle system, the n-particle Green’s function (Gn) equation of motion is developed, with interparticle interactions generating an infinite chain of equations coupling it to (n+1)- and (n−1)-particle Green’s functions (Gn+1 and Gn−1, respectively). Particularly important are the one-particle Green’s function equation with its coupling to the two-particle Green’s function and the two-particle Green’s function equation with its coupling to the three-particle Green’s function. To develop solutions, it is necessary to introduce non-correlation decoupling procedures involving the Hartree and Hartree-Fock approximations for G2 in the G1 equation; and a similar factorization “ansatz” for G3 in the G2 equation, resulting in the Sum of Ladder Diagrams integral equation for G2, with multiple Born iterates and finite collisional lifetimes. Similar treatment of the G11-equation for the joint propagation of one-electron and one-hole subject to mutual Coulomb attraction leads to bound electron-hole exciton states having a discrete hydrogen like spectrum of energy eigenstates. Its role in single-particle propagation is also discussed in terms of one-electron self-energy Σ‎ and the T-matrix


1985 ◽  
Vol 46 (C4) ◽  
pp. C4-321-C4-329 ◽  
Author(s):  
E. Molinari ◽  
G. B. Bachelet ◽  
M. Altarelli

2014 ◽  
Vol 17 (N/A) ◽  
pp. 89-145 ◽  
Author(s):  
Sridhar Sadasivam ◽  
Yuhang Che ◽  
Zhen Huang ◽  
Liang Chen ◽  
Satish Kumar ◽  
...  

2018 ◽  
Vol 12 (5-6) ◽  
pp. 72-80
Author(s):  
A. A. Krylov

In the absence of strong motion records at the future construction sites, different theoretical and semi-empirical approaches are used to estimate the initial seismic vibrations of the soil. If there are records of weak earthquakes on the site and the parameters of the fault that generates the calculated earthquake are known, then the empirical Green’s function can be used. Initially, the empirical Green’s function method in the formulation of Irikura was applied for main shock record modelling using its aftershocks under the following conditions: the magnitude of the weak event is only 1–2 units smaller than the magnitude of the main shock; the focus of the weak event is localized in the focal region of a strong event, hearth, and it should be the same for both events. However, short-termed local instrumental seismological investigation, especially on seafloor, results usually with weak microearthquakes recordings. The magnitude of the observed micro-earthquakes is much lower than of the modeling event (more than 2). To test whether the method of the empirical Green’s function can be applied under these conditions, the accelerograms of the main shock of the earthquake in L'Aquila (6.04.09) with a magnitude Mw = 6.3 were modelled. The microearthquake with ML = 3,3 (21.05.2011) and unknown origin mechanism located in mainshock’s epicentral zone was used as the empirical Green’s function. It was concluded that the empirical Green’s function is to be preprocessed. The complex Fourier spectrum smoothing by moving average was suggested. After the smoothing the inverses Fourier transform results with new Green’s function. Thus, not only the amplitude spectrum is smoothed out, but also the phase spectrum. After such preliminary processing, the spectra of the calculated accelerograms and recorded correspond to each other much better. The modelling demonstrate good results within frequency range 0,1–10 Hz, considered usually for engineering seismological studies.


Sign in / Sign up

Export Citation Format

Share Document