scholarly journals Inversion of point-like scatterers in an elastic half-space by the application of the far-field properties of the Green’s function to the near-field operator

2018 ◽  
Vol 136-137 ◽  
pp. 112-124 ◽  
Author(s):  
Terumi Touhei
2021 ◽  
Vol 47 (7) ◽  
pp. 555-564
Author(s):  
Marina Litinskaya ◽  
Inna Kaganova

2008 ◽  
Vol 385-387 ◽  
pp. 157-160 ◽  
Author(s):  
Bai Tao Sun ◽  
Pei Lei Yan ◽  
Zai Lin Yang

Based on Green’s function, complex function and multi-polar coordinate system, the far field solution of SH wave scattered by an elastic half space with a circular cavity and a crack at an arbitrary position and orientation is investigated. First, a suitable Green’s function is constructed, which is the fundamental solution of the displacement field for a half space with a circular cavity subjected to an out-plane time-harmonic line force at an arbitrary position in half space. Second, by means of crack-division technique, a crack with any location and orientation can be constructed in the region of the half space. The displacement field and stress field are established in the situation of coexistence of circular cavity and crack. At last expressions of far field, such as displacement mode of scattering wave are deduced. Some examples and numerical results are illustrated. The influences of the combination of different media parameters on solutions of far field are discussed.


2011 ◽  
Vol 488-489 ◽  
pp. 440-443
Author(s):  
Zai Lin Yang ◽  
Hua Nan Xu ◽  
Mei Juan Xu ◽  
Bai Tao Sun

The surface displacement of a circular lining structure and multiple cracks in an elastic half space by incident SH-wave is studied in this paper based on the methods of Green's function, complex function and multi-polar coordinates. Firstly, we construct a suitable Green’s function which indicates a fundamental solution to the displacement field for an elastic half space possessing a circular lining structure and cracks while bearing out-plane harmonic line loads at arbitrary point. Then using the method of crack-division, a crack is created. Thus expressions of displacement and stress field are established at the existence of the structure and the cracks. Finally, the interaction of inclusion and two cracks is chosen as numerical examples and the influences of different parameters on the surface displacement are discussed.


2006 ◽  
Vol 324-325 ◽  
pp. 679-682 ◽  
Author(s):  
Zai Lin Yang ◽  
Dian Kui Liu ◽  
Xiao Lang Lv

Scattering of SH wave by a crack is studied in elastic half space with a removable rigid cylindrical inclusion by Green’s function, complex function and moving coordinate method. In half space, firstly the scattering wave function of removable rigid cylindrical inclusion is constructed; next a suitable Green’s function is solved for present problem, then using crack-division to make a crack. Thus the solution of problem can be obtained. Numerical examples are provided and discussed.


Sign in / Sign up

Export Citation Format

Share Document