Local dimension for piecewise monotonic maps on the interval

1995 ◽  
Vol 15 (6) ◽  
pp. 1119-1142 ◽  
Author(s):  
Franz Hofbauer

AbstractThe local dimension of invariant and conformal measures for piecewise monotonic transformations on the interval is considered. For ergodic invariant measures m with positive characteristic exponent χm we show that the local dimension exists almost everywhere and equals hm/χm For certain conformal measures we show a relation between a pressure function and the Hausdorff dimension of sets, on which the local dimension is constant.

2001 ◽  
Vol 63 (3) ◽  
pp. 721-734 ◽  
Author(s):  
M. ZÄHLE

The paper calculates the average density of the normalized Hausdorff measure on the fractal set generated by a conformal iterated function system. It equals almost everywhere a positive constant given by a truncated generalized s-energy integral, where s is the corresponding Hausdorff dimension. As a main tool a conditional Gibbs measure is determined. The appendix proves an appropriate extension of Birkhoff's ergodic theorem which is also of independent interest.


2000 ◽  
Vol 20 (5) ◽  
pp. 1423-1447 ◽  
Author(s):  
R. D. MAULDIN ◽  
M. URBAŃSKI

In this paper we introduce and explore conformal parabolic iterated function systems. We define and study topological pressure, Perron–Frobenius-type operators, semiconformal and conformal measures and the Hausdorff dimension of the limit set. With every parabolic system we associate an infinite hyperbolic conformal iterated function system and we employ it to study geometric and dynamical features (properly defined invariant measures for example) of the limit set.


Author(s):  
A. F. Beardon

Introduction and notation. In this paper a generalization of the Cantor set is discussed. Upper and lower estimates of the Hausdorff dimension of such a set are obtained and, in particular, it is shown that the Hausdorff dimension is always positive and less than that of the underlying space. The concept of local dimension at a point is introduced and studied as a function of that point.


2005 ◽  
Vol 2005 (3) ◽  
pp. 239-254
Author(s):  
Józef Myjak

This paper contains a review of recent results concerning typical properties of dimensions of sets and dimensions of measures. In particular, we are interested in the Hausdorff dimension, box dimension, and packing dimension of sets and in the Hausdorff dimension, box dimension, correlation dimension, concentration dimension, and local dimension of measures.


2020 ◽  
pp. 1-33
Author(s):  
PIETER ALLAART ◽  
DERONG KONG

Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$ . The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit $$\begin{eqnarray}f(q):=\lim _{\unicode[STIX]{x1D6FF}\rightarrow 0}\dim _{\text{H}}(\mathscr{U}\cap (q-\unicode[STIX]{x1D6FF},q+\unicode[STIX]{x1D6FF}))\end{eqnarray}$$ for all $q\in (1,M+1)$ . We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$ , where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.


Sign in / Sign up

Export Citation Format

Share Document