dynamical features
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 110)

H-INDEX

34
(FIVE YEARS 5)

Author(s):  
Ugo Moschella ◽  
Mario Novello

We come back on the dynamical properties of [Formula: see text]-essential cosmological models and show how the interesting phenomenological features of those models are related to the existence of boundaries in the phase surface. We focus our attention to the branching curves where the energy density has an extremum and the effective speed of sound diverges. We discuss the behaviour of solutions of a general class of cosmological models exhibiting such curves and give two possible interpretations; the most interesting possibility regards the arrow of time that is reversed in trespassing the branching curve. This study teaches to us something new about general FLRW cosmologies where the fluids driving the cosmic evolution have equations of state that are multivalued functions of the energy density and other thermodynamical quantities.


2021 ◽  
Author(s):  
Liang Chen ◽  
Guo Sheng Xu ◽  
Linming Shao ◽  
Wei Gao ◽  
Yifeng Wang ◽  
...  

Abstract In this paper, a comparison of dynamical features between the fast H-L and the H-I-L transition, which can be identified by the intermediate phase, or ‘I-phase’, has been made for radio-frequency (RF) heated deuterium plasmas in EAST. The fast H-L transition is characterized by a rapid release of stored energy during the transition transient, while the H-I-L transition exhibits a ‘soft’ H-mode termination. One important distinction between the transitions has been observed by dedicated probe measurements slightly inside the separatrix, with respect to the radial gradient of the floating potential, which corresponds to the E×B flow and/or the electron temperature gradient. The potential gradient inside the separatrix oscillates and persists during the stationary I-phase, and shows a larger amplitude than that before the fast H-L transition. The reduction of the gradient leads to the final transition to the L-mode for both the fast H-L and the H-I-L transition. These findings indicate that the mean E×B flow shear and/or edge electron temperature gradient play a critical role underlying the H-L transition physics. In addition, the back transition in EAST is found to be sensitive to magnetic configuration, where the vertical configuration, i.e., inner strike-point located at vertical target, favours access to the H-I-L transition, while the horizontal shape facilitates achievement of the fast H-L transition. The divertor recycling level normalized to electron density is higher before the fast H-L transition, as compared to that before the I-phase, which strongly suggest that the density of the recycled neutrals is an important ingredient in determining the back transition behaviour.


Author(s):  
Kamyar Hosseini ◽  
Arzu Akbulut ◽  
Dumitru Baleanu ◽  
Soheil Salahshour

Abstract The present paper deals with the Sharma–Tasso–Olver–Burgers equation (STOBE) and its conservation laws and kink solitons. More precisely, the formal Lagrangian, Lie symmetries, and adjoint equations of the STOBE are firstly constructed to retrieve its conservation laws. Kink solitons of the STOBE are then extracted through adopting a series of newly well-designed approaches such as Kudryashov and exponential methods. Diverse graphs in 3D postures are formally portrayed to reveal the dynamical features of kink solitons. According to the authors’ knowledge, the outcomes of the current investigation are new and have been listed for the first time.


2021 ◽  
Author(s):  
Kanykei Kandieva ◽  
Christoph Jacobi ◽  
Khalil Karami ◽  
Alexander Pogoreltsev ◽  
Evgeny Merzlyakov ◽  
...  

<p class="western" align="left">Radar observations from two SKiYMET radars at Collm (51°N, 13°E) and Kazan (56°N, 49°E) during 2016-2017 are used to investigate the longitudinal variability of the mesosphere/lower thermosphere (MLT) wind regime over western and eastern Europe. Both of the meteor radars have similar setups and apply the same analysis procedures to correctly compare MLT parameters and validate the simulated winds. The radar observations confirm the established seasonal variability of the wind distribution, but this distribution is not identical for the two stations. The results show good qualitative agreement with global circulations model predictions by the Middle and Upper Atmosphere Model (MUAM) and the Upper Atmosphere ICOsahedral Non-hydrostatic model (UA-ICON). The MUAM and UA-ICON models well reproduce the main dynamical features, namely the vertical and temporal distributions of the winds observed throughout the year. However, there are also some differences in the longitudinal wind variability of the models and radar observations. Numerical experiments with modified parameterization settings have also been carried out to study the response of the MLT wind circulation to the gravity waves originating from the lower atmosphere. The MUAM model results show that a decrease/increase in the gravity wave intensity at the lower atmosphere leads to an increase/decrease of the mesospheric zonal wind jet extension and the zonal wind reversal.</p>


2021 ◽  
Author(s):  
M. Bosman ◽  
A. Esteve ◽  
L. Gabbanelli ◽  
X. Jordan ◽  
A. López-Gay ◽  
...  

AbstractAnalytic compartmental models are currently used in mathematical epidemiology to forecast the COVID-19 pandemic evolution and explore the impact of mitigation strategies. In general, such models treat the population as a single entity, losing the social, cultural and economical specifici- ties. We present a network model that uses socio-demographic datasets with the highest available granularity to predict the spread of COVID-19 in the province of Barcelona. The model is flexible enough to incorporate the effect of containment policies, such as lockdowns or the use of protec- tive masks, and can be easily adapted to future epidemics. We follow a stochastic approach that combines a compartmental model with detailed individual microdata from the population census, including social determinants and age-dependent strata, and time-dependent mobility information. We show that our model reproduces the dynamical features of the disease across two waves and demonstrate its capability to become a powerful tool for simulating epidemic events.


Author(s):  
Lorenzo Rossi ◽  
Fausto Rossi ◽  
Fabrizio Dolcini

Abstract The topological phase of the Su-Schrieffer-Heeger (SSH) model is known to exhibit two edge states that are topologically protected by the chiral symmetry. We demonstrate that, for any parameter quench performed on the half-filled SSH chain, the occupancy of each lattice site remains locked to 1/2 at any time, due to the additional time-reversal and charge conjugation symmetries. In particular, for a quench from the trivial to the topological phase, no signature of the topological edge states appears in real-space occupancies, independently of the quench protocol, the temperature of the pre-quench thermal state or the presence of chiral disorder. However, a suitably designed local quench from/to a SSH ring threaded by a magnetic flux can break these additional symmetries while preserving the chiral one. Then, real-space effects of the quench do appear and exhibit different dynamical features in the topological and in the trivial phases. Moreover, when the particle filling is different from a half and the pre-quench state is not insulating, the dynamical appearance of the topological edge states is visible already in a chain, it survives time averaging and can be observed also in the presence of chiral-breaking disorder and for instantaneous quenches.


2021 ◽  
pp. 1-48
Author(s):  
Marie C. McGraw ◽  
James G. Larson

Abstract The latitudinal location of the east Pacific Ocean intertropical convergence zone (ITCZ) changes on time scales of days to weeks during boreal spring. This study focuses on tropical near-surface dynamics in the days leading up to the two most frequent types of ITCZ events, nITCZ (Northern Hemisphere) and dITCZ (double). There is a rapid, daily evolution of dynamical features on top of a slower, weekly evolution that occurs leading up to and after nITCZ and dITCZ events. Zonally-elongated bands of anomalous cross-equatorial flow and off-equatorial convergence rapidly intensify and peak one day before or the day of these ITCZ events, followed one or two days later by a peak in near-equatorial zonal wind anomalies. In addition, there is a wide region north of the southeast Pacific subtropical high where anomalous northwesterlies strengthen prior to nITCZ events and southeasterlies strengthen before dITCZ events. Anomalous zonal and meridional near-surface momentum budgets reveal that the terms associated with Ekman balance are of first-order importance preceding nITCZ events, but that the meridional momentum advective terms are just as important before dITCZ events. Variations in cross-equatorial flow are promoted by the meridional pressure gradient force (PGF) prior to nITCZ events and the meridional advection of meridional momentum in addition to the meridional PGF before dITCZ events. Meanwhile, variations in near-equatorial easterlies are driven by the zonal PGF and the Coriolis force preceding nITCZ events and the zonal PGF, the Coriolis force, and the meridional advection of zonal momentum before dITCZ events.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alessandra Celletti ◽  
Giuseppe Pucacco ◽  
Tudor Vartolomei

AbstractSatellite collisions or fragmentations generate a huge number of space debris; over time, the fragments might get dispersed, making it difficult to associate them to the configuration at break-up. In this work, we present a procedure to back-trace the debris, reconnecting them to their original configuration. To this end, we compute the proper elements, namely dynamical quantities which stay nearly constant over time. While the osculating elements might spread and lose connection with the values at break-up, the proper elements, which have been already successfully used to identify asteroid families, retain the dynamical features of the original configuration. We show the efficacy of the procedure, based on a hierarchical implementation of perturbation theory, by analyzing the following four different case studies associated to satellites that underwent a catastrophic event: Ariane 44lp, Atlas V Centaur, CZ-3, Titan IIIc Transtage. The link between (initial and final) osculating and proper elements is evaluated through tools of statistical data analysis. The results show that proper elements allow one to reconnect the fragments to their parent body.


2021 ◽  
Vol 28 (5) ◽  
pp. 1-46
Author(s):  
J. Alberto Álvarez Martín ◽  
Henrik Gollee ◽  
Jörg Müller ◽  
Roderick Murray-Smith

We present Intermittent Control (IC) models as a candidate framework for modelling human input movements in Human–Computer Interaction (HCI). IC differs from continuous control in that users are not assumed to use feedback to adjust their movements continuously, but only when the difference between the observed pointer position and predicted pointer positions becomes large. We use a parameter optimisation approach to identify the parameters of an intermittent controller from experimental data, where users performed one-dimensional mouse movements in a reciprocal pointing task. Compared to previous published work with continuous control models, based on the Kullback–Leibler divergence from the experimental observations, IC is better able to generatively reproduce the distinctive dynamical features and variability of the pointing task across participants and over repeated tasks. IC is compatible with current physiological and psychological theory and provides insight into the source of variability in HCI tasks.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 389
Author(s):  
Evgenii L. Sharaborin ◽  
Oleg A. Rogozin ◽  
Aslan R. Kasimov

We perform high-resolution numerical simulations of three-dimensional dynamics of an elongated bubble in a microchannel at moderate Reynolds numbers up to 1800. For this purpose, we use the coupled Brinkman penalization and volume of fluid methods implemented in the open-source framework Basilisk. The new results are validated with available experimental data and compared with previous numerical and theoretical predictions. We extend existing results to regimes with significant inertia, which are characterized by intense deformations of the bubble, including cases with azimuthal symmetry breaking. Various dynamical features are analyzed in terms of their spatiotemporal characteristics, such as frequencies and wavelengths of the bubble surface undulations and vortical structures in the flow.


Sign in / Sign up

Export Citation Format

Share Document