scholarly journals Stable ergodicity for smooth compact Lie group extensions of hyperbolic basic sets

2005 ◽  
Vol 25 (2) ◽  
pp. 517-551 ◽  
Author(s):  
MICHAEL FIELD ◽  
IAN MELBOURNE ◽  
ANDREI TÖRÖK
2007 ◽  
Vol 27 (5) ◽  
pp. 1633-1650 ◽  
Author(s):  
SARA I. SANTOS ◽  
CHARLES WALKDEN

AbstractWe generalize a series of topological Wiener–Wintner ergodic theorems due to Walters to the context of group extensions of measure-preserving transformations where the group is a non-abelian compact Lie group. Applications to random ergodic theorems for a shift map are given.


2021 ◽  
pp. 1-29
Author(s):  
DREW HEARD

Abstract Greenlees has conjectured that the rational stable equivariant homotopy category of a compact Lie group always has an algebraic model. Based on this idea, we show that the category of rational local systems on a connected finite loop space always has a simple algebraic model. When the loop space arises from a connected compact Lie group, this recovers a special case of a result of Pol and Williamson about rational cofree G-spectra. More generally, we show that if K is a closed subgroup of a compact Lie group G such that the Weyl group W G K is connected, then a certain category of rational G-spectra “at K” has an algebraic model. For example, when K is the trivial group, this is just the category of rational cofree G-spectra, and this recovers the aforementioned result. Throughout, we pay careful attention to the role of torsion and complete categories.


1977 ◽  
Vol 16 (2) ◽  
pp. 279-295 ◽  
Author(s):  
M.J. Field

Let G be a compact Lie group and V and W be linear G spaces. A study is made of the canonical stratification of some algebraic varieties that arise naturally in the theory of C∞ equivariant maps from V to W. The main corollary of our results is the equivalence of Bierstone's concept of “equivariant general position” with our own of “G transversal”. The paper concludes with a description of Bierstone's higher order conditions for equivariant maps in the framework of equisingularity sequences.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Ali Çakmak

The authors wish to make the following corrections to their paper [...]


Author(s):  
Francis Clarke

Let G be a simply connected, semi-simple, compact Lie group, let K* denote Z/2-graded, representable K-theory, and K* the corresponding homology theory. The K-theory of G and of its classifying space BG are well known, (8),(1). In contrast with ordinary cohomology, K*(G) and K*(BG) are torsion-free and have simple multiplicative structures. If ΩG denotes the space of loops on G, it seems natural to conjecture that K*(ΩG) should have, in some sense, a more simple structure than H*(ΩG).


Sign in / Sign up

Export Citation Format

Share Document