scholarly journals The Lyapunov spectrum of some parabolic systems

2009 ◽  
Vol 29 (3) ◽  
pp. 919-940 ◽  
Author(s):  
KATRIN GELFERT ◽  
MICHAŁ RAMS

AbstractWe study the Hausdorff dimension for Lyapunov exponents for a class of interval maps which includes several non-hyperbolic situations. We also analyze the level sets of points with given lower and upper Lyapunov exponents and, in particular, with zero lower Lyapunov exponent. We prove that the level set of points with zero exponent has full Hausdorff dimension, but carries no topological entropy.

2016 ◽  
Vol 38 (3) ◽  
pp. 1168-1200
Author(s):  
HIROKI TAKAHASI

For a strongly dissipative Hénon-like map at the first bifurcation parameter at which the uniform hyperbolicity is destroyed by the formation of tangencies inside the limit set, we effect a multifractal analysis, i.e. decompose the set of non-wandering points on the unstable manifold into level sets of an unstable Lyapunov exponent, and give a partial description of the Lyapunov spectrum which encodes this decomposition. We derive a formula for the Hausdorff dimension of the level sets in terms of the entropy and unstable Lyapunov exponent of invariant probability measures, and show the continuity of the Lyapunov spectrum. We also show that the set of points for which the unstable Lyapunov exponents do not exist carries the full Hausdorff dimension.


2008 ◽  
Vol 60 (2) ◽  
pp. 391-411 ◽  
Author(s):  
Juan C. Migliore

AbstractIn a recent paper, F. Zanello showed that level Artinian algebras in 3 variables can fail to have the Weak Lefschetz Property (WLP), and can even fail to have unimodal Hilbert function. We show that the same is true for the Artinian reduction of reduced, level sets of points in projective 3-space. Our main goal is to begin an understanding of how the geometry of a set of points can prevent its Artinian reduction from having WLP, which in itself is a very algebraic notion. More precisely, we produce level sets of points whose Artinian reductions have socle types 3 and 4 and arbitrary socle degree ≥ 12 (in the worst case), but fail to have WLP. We also produce a level set of points whose Artinian reduction fails to have unimodal Hilbert function; our example is based on Zanello's example. Finally, we show that a level set of points can have Artinian reduction that has WLP but fails to have the Strong Lefschetz Property. While our constructions are all based on basic double G-linkage, the implementations use very different methods.


1981 ◽  
Vol 1 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Anthony Manning

AbstractFor an Axiom A diffeomorphism of a surface with an ergodic invariant measure we prove that the entropy is the product of the positive Lyapunov exponent and the Hausdorff dimension of the set of generic points in an unstable manifold.


2017 ◽  
Vol 39 (2) ◽  
pp. 500-530
Author(s):  
WEISHENG WU

We generalize the notion of Schmidt games to the setting of the general Caratheódory construction. The winning sets for such generalized Schmidt games usually have large corresponding Caratheódory dimensions (e.g., Hausdorff dimension and topological entropy). As an application, we show that for every $C^{1+\unicode[STIX]{x1D703}}$-partially hyperbolic diffeomorphism $f:M\rightarrow M$ satisfying certain technical conditions, the topological entropy of the set of points with non-dense forward orbits is bounded below by the unstable metric entropy (in the sense of Ledrappier–Young) of certain invariant measures. This also gives a unified proof of the fact that the topological entropy of such a set is equal to the topological entropy of $f$, when $f$ is a toral automorphism or the time-one map of a certain non-quasiunipotent homogeneous flow.


2021 ◽  
pp. 1-29
Author(s):  
JORGE OLIVARES-VINALES

Abstract We construct an invariant measure for a piecewise analytic interval map whose Lyapunov exponent is not defined. Moreover, for a set of full measure, the pointwise Lyapunov exponent is not defined. This map has a Lorenz-like singularity and non-flat critical points.


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 110-133
Author(s):  
Guanzhong Ma ◽  
Wenqiang Shen ◽  
Xiao Yao

Abstract In this paper, we establish a framework for the construction of Moran set driven by dynamics. Under this framework, we study the Hausdorff dimension of the generalized intrinsic level set with respect to the given ergodic measure in a class of non-uniformly hyperbolic interval maps with finitely many branches.


1997 ◽  
Vol 17 (3) ◽  
pp. 739-756 ◽  
Author(s):  
YINGJIE ZHANG

We study the Hausdorff dimension of invariant sets for expanding maps and that of hyperbolic sets on unstable manifolds. Upper bounds for the Hausdorff dimension are given in terms of topological pressure, or topological entropy and Lyapunov exponents.


2015 ◽  
Vol 37 (2) ◽  
pp. 646-663 ◽  
Author(s):  
TOMAS PERSSON ◽  
MICHAŁ RAMS

For a map $T:[0,1]\rightarrow [0,1]$ with an invariant measure $\unicode[STIX]{x1D707}$, we study, for a $\unicode[STIX]{x1D707}$-typical $x$, the set of points $y$ such that the inequality $|T^{n}x-y|<r_{n}$ is satisfied for infinitely many $n$. We give a formula for the Hausdorff dimension of this set, under the assumption that $T$ is piecewise expanding and $\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D719}}$ is a Gibbs measure. In some cases we also show that the set has a large intersection property.


Sign in / Sign up

Export Citation Format

Share Document