scholarly journals Quasi-periodic motions in strongly dissipative forced systems

2009 ◽  
Vol 30 (5) ◽  
pp. 1457-1469 ◽  
Author(s):  
GUIDO GENTILE

AbstractWe consider a class of ordinary differential equations describing one-dimensional systems with a quasi-periodic forcing term and in the presence of large damping. We discuss the conditions to be assumed on the mechanical force and the forcing term for the existence of quasi-periodic solutions which have the same frequency vector as the forcing.

2019 ◽  
Vol 21 (07) ◽  
pp. 1850064 ◽  
Author(s):  
Guido Gentile ◽  
Alessandro Mazzoccoli ◽  
Faenia Vaia

We consider a class of singular ordinary differential equations describing analytic systems of arbitrary finite dimension, subject to a quasi-periodic forcing term and in the presence of dissipation. We study the existence of response solutions, i.e. quasi-periodic solutions with the same frequency vector as the forcing term, in the case of large dissipation. We assume the system to be conservative in the absence of dissipation, so that the forcing term is — up to the sign — the gradient of a potential energy, and both the mass and damping matrices to be symmetric and positive definite. Further, we assume a non-degeneracy condition on the forcing term, essentially that the time-average of the potential energy has a strict local minimum. On the contrary, no condition is assumed on the forcing frequency; in particular, we do not require any Diophantine condition. We prove that, under the assumptions above, a response solution always exists provided the dissipation is strong enough. This extends results previously available in the literature in the one-dimensional case.


2006 ◽  
Vol 16 (12) ◽  
pp. 3737-3745 ◽  
Author(s):  
ARMENGOL GASULL ◽  
ANTONI GUILLAMON

This paper deals with the problem of finding upper bounds on the number of periodic solutions of a class of one-dimensional nonautonomous differential equations: those with the right-hand sides being polynomials of degree n and whose coefficients are real smooth one-periodic functions. The case n = 3 gives the so-called Abel equations which have been thoroughly studied and are well understood. We consider two natural generalizations of Abel equations. Our results extend previous works of Lins Neto and Panov and try to step forward in the understanding of the case n > 3. They can be applied, as well, to control the number of limit cycles of some planar ordinary differential equations.


Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


1986 ◽  
Vol 29 (3) ◽  
pp. 299-308 ◽  
Author(s):  
A. J. B. Potter

In [3] Fuller introduced an index (now called the Fuller index) in order to study periodic solutions of ordinary differential equations. The objective of this paper is to give a simple generalisation of the Fuller index which can be used to study periodic points of flows in Banach spaces. We do not claim any significant breakthrough but merely suggest that the simplistic approach, presented here, might prove useful for the study of non-linear differential equations. We show our results can be used to study functional differential equations.


Sign in / Sign up

Export Citation Format

Share Document