scholarly journals Equilibrium states for partially hyperbolic horseshoes

2010 ◽  
Vol 31 (1) ◽  
pp. 179-195 ◽  
Author(s):  
R. LEPLAIDEUR ◽  
K. OLIVEIRA ◽  
I. RIOS

AbstractWe study ergodic properties of invariant measures for the partially hyperbolic horseshoes, introduced in Díaz et al [Destroying horseshoes via heterodimensional cycles: generating bifurcations inside homoclinic classes. Ergod. Th. & Dynam. Sys. 29 (2009), 433–474]. These maps have a one-dimensional center direction Ec, and are at the boundary of the (uniformly) hyperbolic diffeomorphisms (they are constructed bifurcating hyperbolic horseshoes via heterodimensional cycles). We prove that every ergodic measure is hyperbolic, but the set of Lyapunov exponents in the central direction has gap: all ergodic invariant measures have negative exponent, with the exception of one ergodic measure with positive exponent. As a consequence, we obtain the existence of equilibrium states for any continuous potential. We also prove that there exists a phase transition for the smooth family of potentials given by ϕt=t log ∣DF∣Ec∣.

2020 ◽  
pp. 1-27
Author(s):  
HUYI HU ◽  
WEISHENG WU ◽  
YUJUN ZHU

Abstract Unstable pressure and u-equilibrium states are introduced and investigated for a partially hyperbolic diffeomorphism f. We define the unstable pressure $P^{u}(f, \varphi )$ of f at a continuous function $\varphi $ via the dynamics of f on local unstable leaves. A variational principle for unstable pressure $P^{u}(f, \varphi )$ , which states that $P^{u}(f, \varphi )$ is the supremum of the sum of the unstable entropy and the integral of $\varphi $ taken over all invariant measures, is obtained. U-equilibrium states at which the supremum in the variational principle attains and their relation to Gibbs u-states are studied. Differentiability properties of unstable pressure, such as tangent functionals, Gateaux differentiability and Fréchet differentiability and their relations to u-equilibrium states, are also considered.


2008 ◽  
Vol 28 (3) ◽  
pp. 843-862 ◽  
Author(s):  
YONGXIA HUA ◽  
RADU SAGHIN ◽  
ZHIHONG XIA

AbstractWe consider partially hyperbolic diffeomorphisms on compact manifolds. We define the notion of the unstable and stable foliations stably carrying some unique non-trivial homologies. Under this topological assumption, we prove the following two results: if the center foliation is one-dimensional, then the topological entropy is locally a constant; and if the center foliation is two-dimensional, then the topological entropy is continuous on the set of all $C^{\infty }$ diffeomorphisms. The proof uses a topological invariant we introduced, Yomdin’s theorem on upper semi-continuity, Katok’s theorem on lower semi-continuity for two-dimensional systems, and a refined Pesin–Ruelle inequality we proved for partially hyperbolic diffeomorphisms.


2021 ◽  
Vol 17 (0) ◽  
pp. 557
Author(s):  
Jinhua Zhang

<p style='text-indent:20px;'>We prove that for any partially hyperbolic diffeomorphism having neutral center behavior on a 3-manifold, the center stable and center unstable foliations are complete; moreover, each leaf of center stable and center unstable foliations is a cylinder, a Möbius band or a plane.</p><p style='text-indent:20px;'>Further properties of the Bonatti–Parwani–Potrie type of examples of of partially hyperbolic diffeomorphisms are studied. These are obtained by composing the time <inline-formula><tex-math id="M1">\begin{document}$ m $\end{document}</tex-math></inline-formula>-map (for <inline-formula><tex-math id="M2">\begin{document}$ m&gt;0 $\end{document}</tex-math></inline-formula> large) of a non-transitive Anosov flow <inline-formula><tex-math id="M3">\begin{document}$ \phi_t $\end{document}</tex-math></inline-formula> on an orientable 3-manifold with Dehn twists along some transverse tori, and the examples are partially hyperbolic with one-dimensional neutral center. We prove that the center foliation is given by a topological Anosov flow which is topologically equivalent to <inline-formula><tex-math id="M4">\begin{document}$ \phi_t $\end{document}</tex-math></inline-formula>. We also prove that for the original example constructed by Bonatti–Parwani–Potrie, the center stable and center unstable foliations are robustly complete.</p>


2019 ◽  
Vol 20 (02) ◽  
pp. 2050014
Author(s):  
Zeya Mi

We study the local entropy of typical infinite Bowen balls in random dynamical systems, and show the random entropy expansiveness for [Formula: see text] partially hyperbolic diffeomorphisms with multi one-dimensional centers. Moreover, we consider [Formula: see text] diffeomorphism [Formula: see text] with dominated splitting [Formula: see text] such that [Formula: see text] for every [Formula: see text], and all the Lyapunov exponents are non-negative along [Formula: see text] and non-positive along [Formula: see text], we prove the asymptotically random entropy expansiveness for [Formula: see text].


1984 ◽  
Vol 4 (4) ◽  
pp. 605-611 ◽  
Author(s):  
Clark Robinson

AbstractThis paper concerns perturbations of the geometric model of the Lorenz equations and their associated one-dimensional Poincaré maps. R. Williams has shown that if a map of the interval of the type arising from the Lorenz equations satisfies f′(x) > 2½ everywhere except at the discontinuity then f is locally eventually onto (l.e.o.) and so topologically transitive [14]. We show roughly that if are the end points of the interval, and their iterates stay on the same side of the point of discontinuity for 0 ≤ j ≤ k, and f′(x) > 21/(k+1) everywhere, then f is l.e.o. Secondly, we show that the one-dimensional Poincaré map of any Cr perturbation of the geometric model (for large enough r) has an ergodic measure which is equivalent to Lebesgue measure. This result follows by showing it is C1+α and satisfies a theorem of Keller, Wong, Lasota, Li & Yorke.


2019 ◽  
Vol 169 (3) ◽  
pp. 507-545 ◽  
Author(s):  
LORENZO J. DÍAZ ◽  
KATRIN GELFERT ◽  
BRUNO SANTIAGO

AbstractWe study C1-robustly transitive and nonhyperbolic diffeomorphisms having a partially hyperbolic splitting with one-dimensional central bundle whose strong un-/stable foliations are both minimal. In dimension 3, an important class of examples of such systems is given by those with a simple closed periodic curve tangent to the central bundle. We prove that there is a C1-open and dense subset of such diffeomorphisms such that every nonhyperbolic ergodic measure (i.e. with zero central exponent) can be approximated in the weak* topology and in entropy by measures supported in basic sets with positive (negative) central Lyapunov exponent. Our method also allows to show how entropy changes across measures with central Lyapunov exponent close to zero. We also prove that any nonhyperbolic ergodic measure is in the intersection of the convex hulls of the measures with positive central exponent and with negative central exponent.


2021 ◽  
pp. 1-54
Author(s):  
A. AVILA ◽  
MARCELO VIANA ◽  
A. WILKINSON

Abstract We explore new connections between the dynamics of conservative partially hyperbolic systems and the geometric measure-theoretic properties of their invariant foliations. Our methods are applied to two main classes of volume-preserving diffeomorphisms: fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic systems. When the center is one-dimensional, assuming the diffeomorphism is accessible, we prove that the disintegration of the volume measure along the center foliation is either atomic or Lebesgue. Moreover, the latter case is rigid in dimension three (this does not require accessibility): the center foliation is actually smooth and the diffeomorphism is smoothly conjugate to an explicit rigid model. A partial extension to fibered partially hyperbolic systems with compact fibers of any dimension is also obtained. A common feature of these classes of diffeomorphisms is that the center leaves either are compact or can be made compact by taking an appropriate dynamically defined quotient. For volume-preserving partially hyperbolic diffeomorphisms whose center foliation is absolutely continuous, if the generic center leaf is a circle, then every center leaf is compact.


Sign in / Sign up

Export Citation Format

Share Document