Subcontinua of the closure of the unstable manifold at a homoclinic tangency

1999 ◽  
Vol 19 (2) ◽  
pp. 289-307 ◽  
Author(s):  
MARCY BARGE ◽  
BEVERLY DIAMOND

Suppose that $F$ is a $C^\infty$ diffeomorphism of the plane with hyperbolic fixed point $p$ for which a branch of the unstable manifold, $W^u_+(p)$, has a same-sided quadratic tangency with the stable manifold, $W^s(p)$. If the eigenvalues of $DF$ at $p$ satisfy a non-resonance condition, each nonempty open set of $ \cl( W^u_+(p))$ contains a copy of any continuum that can be written as the inverse limit space of a sequence of unimodal bonding maps.

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Zhan jiang Ji

According to the definition of sequence shadowing property and regularly recurrent point in the inverse limit space, we introduce the concept of sequence shadowing property and regularly recurrent point in the double inverse limit space and study their dynamical properties. The following results are obtained: (1) Regularly recurrent point sets of the double shift map σ f ∘ σ g are equal to the double inverse limit space of the double self-map f ∘ g in the regularly recurrent point sets. (2) The double self-map f ∘ g has sequence shadowing property if and only if the double shift map σ f ∘ σ g has sequence shadowing property. Thus, the conclusions of sequence shadowing property and regularly recurrent point are generalized to the double inverse limit space.


2021 ◽  
Vol 6 (10) ◽  
pp. 10495-10505
Author(s):  
Risong Li ◽  
◽  
Xiaofang Yang ◽  
Yongxi Jiang ◽  
Tianxiu Lu ◽  
...  

<abstract><p>As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.</p></abstract>


1995 ◽  
Vol 15 (6) ◽  
pp. 1045-1059 ◽  
Author(s):  
Ray Brown

AbstractWe show, using elementary methods, that for 0 < a the measure-preserving, orientation-preserving Hénon map, H, has a horseshoe. This improves on the result of Devaney and Nitecki who have shown that a horseshoe exists in this map for a ≥ 8. For a > 0, we also prove the conjecture of Devaney that the first symmetric homoclinic point is transversal.To obtain our results, we show that for a branch, Cu, of the unstable manifold of a hyperbolic fixed point of H, Cu crosses the line y = − x and that this crossing is a homoclinic point, χc. This has been shown by Devaney, but we obtain the crossing using simpler methods. Next we show that if the crossing of Wu(p) and Ws(p) at χc is degenerate then the slope of Cu at this crossing is one. Following this we show that if χc is a degenerate homoclinic its x-coordinate must be greater than l/(2a). We then derive a contradiction from this by showing that the slope of Cu at H-1(χc) must be both positive and negative, thus we conclude that χc is transversal.Our approach uses a lemma that gives a recursive formula for the sign of curvature of the unstable manifold. This lemma, referred to as ‘the curvature lemma’, is the key to reducing the proof to elementary methods. A curvature lemma can be derived for a very broad array of maps making the applicability of these methods very general. Further, since curvature is the strongest differentiability feature needed in our proof, the methods work for maps of the plane which are only C2.


2016 ◽  
Vol 38 (4) ◽  
pp. 1499-1524 ◽  
Author(s):  
JUDY KENNEDY ◽  
VAN NALL

Set-valued functions from an interval into the closed subsets of an interval arise in various areas of science and mathematical modeling. Research has shown that the dynamics of a single-valued function on a compact space are closely linked to the dynamics of the shift map on the inverse limit with the function as the sole bonding map. For example, it has been shown that with Devaney’s definition of chaos the bonding function is chaotic if and only if the shift map is chaotic. One reason for caring about this connection is that the shift map is a homeomorphism on the inverse limit, and therefore the topological structure of the inverse-limit space must reflect in its richness the dynamics of the shift map. In the set-valued case there may not be a natural definition for chaos since there is not a single well-defined orbit for each point. However, the shift map is a continuous single-valued function so it together with the inverse-limit space form a dynamical system which can be chaotic in any of the usual senses. For the set-valued case we demonstrate with theorems and examples rich topological structure in the inverse limit when the shift map is chaotic (on certain invariant sets). We then connect that chaos to a property of the set-valued function that is a natural generalization of an important chaos producing property of continuous functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Ali Barzanouni

We discuss the relationship between ergodic shadowing property and inverse shadowing property offand that of the shift map σfon the inverse limit space.


1990 ◽  
Vol 10 (4) ◽  
pp. 793-821 ◽  
Author(s):  
Marek Ryszard Rychlik

AbstractThe main result of this paper is a construction of geometric Lorenz attractors (as axiomatically defined by J. Guckenheimer) by means of an Ω-explosion. The unperturbed vector field on ℝ3is assumed to have a hyperbolic fixed point, whose eigenvalues satisfy the inequalities λ1> 0, λ2> 0, λ3> 0 and |λ2|>|λ1|>|λ3|. Moreover, the unstable manifold of the fixed point is supposed to form a double loop. Under some other natural assumptions a generic two-parameter family containing the unperturbed vector field contains geometric Lorenz attractors.A possible application of this result is a method of proving the existence of geometric Lorenz attractors in concrete families of differential equations. A detailed discussion of the method is in preparation and will be published as Part II.


Sign in / Sign up

Export Citation Format

Share Document