Chaos and Order of Inverse Limit Space for a Graph Map

1980 ◽  
Vol 21 (1) ◽  
pp. 25-32
Author(s):  
Jie Lu
2000 ◽  
Vol 107 (3) ◽  
pp. 275-295 ◽  
Author(s):  
Jie Lü ◽  
Jincheng Xiong ◽  
Xiangdong Ye

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Zhan jiang Ji

According to the definition of sequence shadowing property and regularly recurrent point in the inverse limit space, we introduce the concept of sequence shadowing property and regularly recurrent point in the double inverse limit space and study their dynamical properties. The following results are obtained: (1) Regularly recurrent point sets of the double shift map σ f ∘ σ g are equal to the double inverse limit space of the double self-map f ∘ g in the regularly recurrent point sets. (2) The double self-map f ∘ g has sequence shadowing property if and only if the double shift map σ f ∘ σ g has sequence shadowing property. Thus, the conclusions of sequence shadowing property and regularly recurrent point are generalized to the double inverse limit space.


2021 ◽  
Vol 6 (10) ◽  
pp. 10495-10505
Author(s):  
Risong Li ◽  
◽  
Xiaofang Yang ◽  
Yongxi Jiang ◽  
Tianxiu Lu ◽  
...  

<abstract><p>As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.</p></abstract>


2016 ◽  
Vol 38 (4) ◽  
pp. 1499-1524 ◽  
Author(s):  
JUDY KENNEDY ◽  
VAN NALL

Set-valued functions from an interval into the closed subsets of an interval arise in various areas of science and mathematical modeling. Research has shown that the dynamics of a single-valued function on a compact space are closely linked to the dynamics of the shift map on the inverse limit with the function as the sole bonding map. For example, it has been shown that with Devaney’s definition of chaos the bonding function is chaotic if and only if the shift map is chaotic. One reason for caring about this connection is that the shift map is a homeomorphism on the inverse limit, and therefore the topological structure of the inverse-limit space must reflect in its richness the dynamics of the shift map. In the set-valued case there may not be a natural definition for chaos since there is not a single well-defined orbit for each point. However, the shift map is a continuous single-valued function so it together with the inverse-limit space form a dynamical system which can be chaotic in any of the usual senses. For the set-valued case we demonstrate with theorems and examples rich topological structure in the inverse limit when the shift map is chaotic (on certain invariant sets). We then connect that chaos to a property of the set-valued function that is a natural generalization of an important chaos producing property of continuous functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Ali Barzanouni

We discuss the relationship between ergodic shadowing property and inverse shadowing property offand that of the shift map σfon the inverse limit space.


1972 ◽  
Vol 14 (4) ◽  
pp. 467-469 ◽  
Author(s):  
Kim-Peu Chew

AbstractLet N denote the discrete space of all natural numbers. A space X is N-compact if it is homeomorphic with some closed subspace of a product of copies of N. In this paper, N-compact spaces are characterized as homeomorphs of inverse limit space of inverse systems of copies of subsets of N. Also, it is shown that a space X is N-compact if and only if the space (X) of all non-empty compact subsets of X with the finite topology is N-compact.


2021 ◽  
Vol 19 (1) ◽  
pp. 1290-1298
Author(s):  
Zhanjiang Ji

Abstract First, we give the concepts of G-sequence shadowing property, G-equicontinuity and G-regularly recurrent point. Second, we study their dynamical properties in the inverse limit space under group action. The following results are obtained. (1) The self-mapping f f has the G-sequence shadowing property if and only if the shift mapping σ \sigma has the G ¯ \overline{G} -sequence shadowing property; (2) The self-mapping f f is G-equicontinuous if and only if the shift mapping σ \sigma is G ¯ \overline{G} -equicontinuous; (3) R R G ¯ ( σ ) = lim ← ( R R G ( f ) , f ) R{R}_{\overline{G}}\left(\sigma )=\underleftarrow{\mathrm{lim}}\left(R{R}_{G}(f),f) . These conclusions make up for the lack of theory in the inverse limit space under group action.


Sign in / Sign up

Export Citation Format

Share Document