scholarly journals An ice-shelf model test based on the Ross Ice Shelf, Antarctica

1996 ◽  
Vol 23 ◽  
pp. 46-51 ◽  
Author(s):  
D. R. MacAyeal ◽  
V. Rommelaere ◽  
P. Huybrechts ◽  
C. L. Hulbe ◽  
J. Determann ◽  
...  

A standard numerical experiment featuring the Ross Ice Shelf, Antarctica, is presented as a test package for the development and intercomparison of ice-shelf models. The emphasis of this package is solution of stress-equilibrium equations for an ice-shelf velocity consistent with present observations. As a demonstration, we compare five independently developed ice-shelf models based on finite-difference and finite-element methods. Our results suggest that there is little difference between finite-element and finite-difference methods in capturing the basic, large-scale flow features of the ice shelf. We additionally show that the fit between model and observed velocity depends strongly on the ice-shelf temperature field, for which there is presently little observational control. The main differences between model results are due to the equations being solved, the boundary conditions at the ice from and the discretization method (finite element vs finite difference).

1996 ◽  
Vol 23 ◽  
pp. 46-51 ◽  
Author(s):  
D. R. MacAyeal ◽  
V. Rommelaere ◽  
P. Huybrechts ◽  
C. L. Hulbe ◽  
J. Determann ◽  
...  

A standard numerical experiment featuring the Ross Ice Shelf, Antarctica, is presented as a test package for the development and intercomparison of ice-shelf models. The emphasis of this package is solution of stress-equilibrium equations for an ice-shelf velocity consistent with present observations. As a demonstration, we compare five independently developed ice-shelf models based on finite-difference and finite-element methods. Our results suggest that there is little difference between finite-element and finite-difference methods in capturing the basic, large-scale flow features of the ice shelf. We additionally show that the fit between model and observed velocity depends strongly on the ice-shelf temperature field, for which there is presently little observational control. The main differences between model results are due to the equations being solved, the boundary conditions at the ice from and the discretization method (finite element vs finite difference).


1997 ◽  
Vol 24 ◽  
pp. 43-48 ◽  
Author(s):  
Vincent Rommelaere ◽  
Douglas R. MacAyeal

Measurements made during the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS, 1973–78) are used to determine the large-scale rheological conditions of the Ross Ice Shelf, Antarctica. Our method includes a numerical ice-shelf model based on the stress-equilibrium equations and control theory. We additionally perform a few tests on simplified geometries to investigate the precision of our method. Our results consist of a map of the depth-averaged viscosity of the central part of the Ross Ice Shelf to within an uncertainty of 20%. We find that the viscosity variations are consistent with Glen’s flow law. Application of a more realistic flow law in our study provides little enhancement of ice-shelf model accuracy until uncertainties associated with basal melting conditions and with temperature profiles at inflow boundaries are addressed. Finally, our results suggest a strong viscosity anomaly in the west-central part of the ice shelf, which is interpreted to be associated with changes in the dynamics of Ice Stream A or B at least 1000 years ago. This feature conforms to the prevailing notion that the West Antarctic ice streams are unsteady.


1997 ◽  
Vol 24 ◽  
pp. 43-48 ◽  
Author(s):  
Vincent Rommelaere ◽  
Douglas R. MacAyeal

Measurements made during the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS, 1973–78) are used to determine the large-scale rheological conditions of the Ross Ice Shelf, Antarctica. Our method includes a numerical ice-shelf model based on the stress-equilibrium equations and control theory. We additionally perform a few tests on simplified geometries to investigate the precision of our method. Our results consist of a map of the depth-averaged viscosity of the central part of the Ross Ice Shelf to within an uncertainty of 20%. We find that the viscosity variations are consistent with Glen’s flow law. Application of a more realistic flow law in our study provides little enhancement of ice-shelf model accuracy until uncertainties associated with basal melting conditions and with temperature profiles at inflow boundaries are addressed. Finally, our results suggest a strong viscosity anomaly in the west-central part of the ice shelf, which is interpreted to be associated with changes in the dynamics of Ice Stream A or B at least 1000 years ago. This feature conforms to the prevailing notion that the West Antarctic ice streams are unsteady.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750067 ◽  
Author(s):  
Siraj-ul-Islam ◽  
Vikendra Singh

A stable localized meshless method (SLMM) is proposed for convection dominated PDEs exhibiting boundary layer. Some cases of continuous and discontinuous boundary data as well as continuous and discontinuous source function with constant and variable convection coefficients are considered. In this approach, the localized meshless method is implemented on specialized sub-domains embedded with flow direction of underlying fluid. The proposed method is based on flow featured overlapping sub-domains, called stencils. The concept of flow direction is used to construct good quality stencils having the ability to capture flow features, such as boundary layer, accurately. Numerical experiments are presented to compare the proposed method with the finite-difference method on special grid (FDSG), the standard finite-element method, hybridized SUPG method, hybridized upwind method, residual-free bubbles (RFB) method and other meshless methods. Numerical results confirm that the new approach is accurate and efficient for solving a wide class of one-, two-, and three-dimensional convection-dominated PDEs. In some cases, performance of the SLMM is comparable and sometimes better than the mesh-based finite-element and finite-difference methods.


2009 ◽  
Vol 137 (11) ◽  
pp. 4030-4046 ◽  
Author(s):  
Daniel F. Steinhoff ◽  
Saptarshi Chaudhuri ◽  
David H. Bromwich

Abstract A case study illustrating cloud processes and other features associated with the Ross Ice Shelf airstream (RAS), in Antarctica, is presented. The RAS is a semipermanent low-level wind regime primarily over the western Ross Ice Shelf, linked to the midlatitude circulation and formed from terrain-induced and large-scale forcing effects. An integrated approach utilizes Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery, automatic weather station (AWS) data, and Antarctic Mesoscale Prediction System (AMPS) forecast output to study the synoptic-scale and mesoscale phenomena involved in cloud formation over the Ross Ice Shelf during a RAS event. A synoptic-scale cyclone offshore of Marie Byrd Land draws moisture across West Antarctica to the southern base of the Ross Ice Shelf. Vertical lifting associated with flow around the Queen Maud Mountains leads to cloud formation that extends across the Ross Ice Shelf to the north. The low-level cloud has a warm signature in thermal infrared imagery, resembling a surface feature of turbulent katabatic flow typically ascribed to the RAS. Strategically placed AWS sites allow assessment of model performance within and outside of the RAS signature. AMPS provides realistic simulation of conditions aloft but experiences problems at low levels due to issues with the model PBL physics. Key meteorological features of this case study, within the context of previous studies on longer time scales, are inferred to be common occurrences. The assumption that warm thermal infrared signatures are surface features is found to be too restrictive.


Sign in / Sign up

Export Citation Format

Share Document