flow features
Recently Published Documents


TOTAL DOCUMENTS

1040
(FIVE YEARS 315)

H-INDEX

41
(FIVE YEARS 8)

2022 ◽  
pp. 1-24
Author(s):  
Jordi Ventosa-Molina ◽  
Björn Koppe ◽  
Martin Lange ◽  
Ronald Mailach ◽  
Jochen Fröhlich

Abstract In turbomachines, rotors and stators differ by the rotation of the former. Hence, half of each stage is directly influenced by rotation effects. The influence of rotation on the flow structure and its impact on the performance is studied through Wall-Resolving Large Eddy Simulations of a rotor with large relative tip gap size. The simulations are performed in a rotating frame with rotation accounted for through a Coriolis force term. In a first step experimental results are used to provide validation. The main part of the study is the comparison of the results from two simulations, one representing the rotating configuration, one with the Coriolis force removed, without any other change. This setup allows very clean assessment of the influence of rotation. The turbulence-resolving approach ensures that the turbulent flow features are well represented. The results show a significant impact of rotation on the secondary flow. In the tip region the Tip Leakage Vortex is enlarged and destabilised. Inside the tip gap the flow is altered as well, with uniformization in the rotating case. At the blade midspan, no significant effects are observed on the suction side, while an earlier transition to turbulence is found on the pressure side. Near the hub, rotation effects are shown to reduce the corner separation significantly.


Author(s):  
Xiao-lin Sun ◽  
Shan Ma

Curved ducts are widely used in aircraft engines to improve some capability of aero-engines. Complex internal flow characteristics would be induced by the curvature in such components. In this study, the influence of parameters, including the arc angle α, the curvature radius R i, and the height H, on the local accelerating and transonic flow in the curved ducts with equal area were studied numerically and theoretically under different nozzle pressure ratios (NPRs). The range of the Re number based on the height of the duct and the velocity at the inlet was [Formula: see text] ∼ [Formula: see text]. The shear stress transport κ-ω turbulent model was proved by the test data to suitably simulate the flow field in curved ducts because it could accurately predict the flow separations under adverse pressure gradients. The uncertainty of the pressure scan value to obtain the test data was ±0.05%. Numerical results showed that the effect of α on the flow characteristics of the curved ducts is little. The maximum Ma number in the curved section reduces with the increase of R i, and that grows with the increase of H. The range of the maximum Ma number was 1.20∼1.80. The critical NPRs, which decided the special flow features, were found in the curved ducts. The critical NPR rises with the increase of R i; however, the effect of H on the critical NPR is irregular due to the flow separations located near the lower wall induced by the large adverse pressure gradient. The theoretical results based on the small perturbation theory of transonic flow in the polar coordinate system proved that the distribution of sonic line was just dependent on the inner diameter R1, the outer diameter R2, and the arc angle θmax of the curved section. The critical mass flow and the critical NPR2 are only related to R1 and R2.


Author(s):  
S. Ahmad ◽  
Samreen Sheriff ◽  
Aisha Anjum ◽  
M. Farooq

The utility of convergent/divergent channel driven flow to improve the effectiveness of heat transport rate in industrial and engineering systems is diverse. This motivates us to disclose hybrid nanofluid flow features through non-parallel walls under hydro-magnetic aspect. The modified Darcian (Darcy–Forchheimer) expression is utilized for formulation. Reflection of improved Darcian form modifies the expression of velocity via square of velocity term. The effects of temperature jump and viscous dissipation are implemented in energy expression. Additionally, the slip flow phenomenon under the stretching/shrinking characteristics is studied. The analysis is carried out under the theory of boundary layer. Significant variables are implemented to acquire the dimensionless mathematical expressions. Dimensionless problem is tackled through a well-known homotopy technique. To observe the upshots of numerous pertinent parameters upon non-dimensional profiles of velocity and temperature, the graphs are plotted for both convergent/divergent channels. The heat transfer rate as well as drag force is also analyzed. In this study, it is concluded that temperature field rises in both divergent/convergent channels for dominant thermal slip parameter. Moreover, inertia parameter effects are seen weaker in converging channel for the velocity profile, while opposite trend is observed for diverging channel.


Author(s):  
Jenna K Davis ◽  
Christopher J. Clifford ◽  
Dustin Kelly ◽  
B Thurow

Abstract The development of a tomographic BOS implementation system utilizing up to four plenoptic cameras is presented. A systematic set of experiments was performed using a pair of solid dimethylpolysiloxan (PDMS) cylinders immersed in a nearly refractive index matched gylcerol/water solution to represent discrete flow features with known sizes, shapes, separation distances, and orientation. A study was conducted to assess the influence of these features on the accuracy of 3D reconstructions of the refractive index field. It was determined that the limited angular information collected by a single plenoptic camera is insufficient for single-camera 3D reconstructions. In multi-camera configurations, the additional views collected by a plenoptic camera were shown to improve the overall reconstruction accuracy compared to an equivalent single view per camera reconstruction, potentially reducing the number of overall cameras needed to achieve a desired accuracy. For the imaging of two cylinders, three or more cameras are generally needed to avoid significant ghosting artifacts in the reconstruction. Quantitative results are presented that show that: (1) two separate cylinders will be individually resolved as long as measurements from one camera are able to observe separation between the cylinders; (2) the error in the reconstructed 3D refractive index field increases as the size of the feature decreases; and (3) the use of volumetric masking within the reconstruction algorithm is critical in order to improve the accuracy of the solution.


Author(s):  
Vicente Salinas ◽  
Eric C. Bruning ◽  
Edward R. Mansell

Abstract Lightning is frequently initiated within the convective regions of thunderstorms, and so flash rates tend to follow trends in updraft speed and volume. It has been suggested that lightning production is linked to the turbulent flow generated by updrafts as turbulent eddies organize charged hydrometeors into complex charge structures. These complex charge structures consist of local regions of increased charge magnitudes between which flash initiating electric fields may be generated. How turbulent kinematics influences lightning production, however, remains unclear. In this study, lightning flashes produced in a multi-cell and two supercell storms simulated using The Collaborative Model for Multiscale Atmospheric Simulation (COMMAS) were examined to identify the kinematic flow structures within which they occurred. By relating the structures of updrafts to thermals, initiated lightning were expected to be located where the rate of strain and rotational flow are equal, or between updraft and eddy flow features. Results showed that the average lightning flash is initiated in kinematic flow structures dominated by vortical flow patterns, similar to those of thermals, and the structures’ kinematics are characterized by horizontal vorticity and vertical shearing. These kinematic features were common across all cases and demonstrated that where flash initiating electric fields are generated is along the periphery of updrafts where turbulent eddies are produced. Careful consideration of flow structures near initiated flashes is consistent with those of thermals rising through a storm.


Author(s):  
Geng Liu ◽  
Weili Jiang ◽  
Xudong Zheng ◽  
Qian Xue

Abstract Phocid seals detect and track artificial or biogenic hydrodynamic trails based on mechanical signals of their whisker arrays. In this paper, we investigated the correlations between flow structures and whisker array signals using a simplified numerical model of fluid-structure interaction (FSI). Three-dimensional (3D) wakes of moving paddles in three different shapes (rectangular plate, undulated plate, and circular cylinder) were simulated using an in-house immersed-boundary-method-based computational fluid dynamics (CFD) solver. One-way FSI was then simulated to obtain the dynamic behavior and root signal of each whisker in the two whisker arrays on a seal head in each wake. The position, geometry, and material of each whisker were modeled based on the measurements reported in literatures. The correlations between the wake structures and whisker array signals were analyzed. It was found that the patterns of the signals on the whisker arrays can reflect the strength, timing, and moving trajectories of the jets induced by the vortices in the wakes. Specifically, the rectangular plate generates the strongest starting vortex ring as well as the strongest jets, while the undulated plate generates the weakest ones. These flow features are fully reflected by the largest whisker signal magnitude in the rectangular plate sensing and the smallest one in the undulated plate sensing. Moreover, the timing of the signal initiation and the maximum signal agree well with the timing of the jet reaching the arrays and the maximum flow speed, respectively. The correlation coefficient between the moving trajectories of the jet and the movement of the high signal level region in the array was found to be higher than 0.9 in the rectangular plate case. The results provide a physical insight into the mechanisms of seal whisker flow sensing.


Sign in / Sign up

Export Citation Format

Share Document