scholarly journals Gamma-ray source through inverse Compton scattering in a thermal hohlraum

2013 ◽  
Vol 31 (4) ◽  
pp. 607-611 ◽  
Author(s):  
Y.L. Ping ◽  
X.T. He ◽  
H. Zhang ◽  
B. Qiao ◽  
H.B. Cai ◽  
...  

AbstractA new inverse Compton scattering scheme for production of high-energy Gamma-ray sources is proposed in which a Giga-electronvolt (GeV) electron beam is injected into a thermal hohlraum. It is found that by increasing the hohlraum background temperature, the scattered photons experience kinematic pileup, resulting in more monochromatic spectrum and smaller scattering angle. When a relativistic electron beam with energy 1 GeV and charge 10nC is injected into a 0.5 keV hohlraum, 80% of the scattered photons have energy above 0.5 GeV.

2012 ◽  
Vol 12 ◽  
pp. 224-228
Author(s):  
N. SAHAKYAN

Recently Fermi LAT collaboration reported the detection of high energy gamma-ray signal from giant lobes of the radio galaxy Centaurus A. We discuss the origin of this radiation and the possible radiation mechanisms, including inverse-Compton scattering of low energy photons and interaction of relativistic protons with the ambient low density plasma.


1998 ◽  
Vol 164 ◽  
pp. 93-94
Author(s):  
S. J. Qian ◽  
X. Z. Zhang ◽  
A. Witzel ◽  
T. P. Krichbaum ◽  
S. Britzen ◽  
...  

AbstractThe high energy gamma-ray flares observed in PKS 0528+134 are interpreted in terms of the external inverse Compton scattering (EICS) mechanism. The evolutional relationship between the gamma-ray flares and the associated mm-radio outbursts is investigated. The TeV/X-ray flare detected in May of 1994 from Mrk 421 is interpreted in terms of the SSC mechanism and it is shown that it may be due to the acceleration of relativistic electrons with an initially flat energy spectrum (N(E)∝E−s with s~1.5), rather than just a flattening of the high energy tail in the electron energy distribution of the source in the quiescent state.


Author(s):  
Rafael Alves Batista ◽  
Andrey Saveliev ◽  
Elisabete M de Gouveia Dal Pino

Abstract Relativistic jets from blazars are known to be sources of very-high-energy gamma rays (VHEGRs). During their propagation in the intergalactic space, VHEGRs interact with pervasive cosmological photon fields such as the extragalactic background light (EBL) and the cosmic microwave background (CMB), producing electron-positron pairs. These pairs can upscatter CMB/EBL photons to high energies via inverse Compton scattering, thereby continuing the cascade process. This is often used to set limits on intergalactic magnetic fields (IGMFs). However, the picture may change if plasma instabilities, arising due to the interaction of the pairs with the intergalactic medium (IGM), cool down the electrons/positrons faster than inverse Compton scattering. As a consequence, the kinetic energy lost by the pairs to the IGM could cause a hardening in the observed gamma-ray spectrum at energies below ∼100 GeV. Here we study several types and models of instabilities and assess their impact for interpreting observations of distant blazars. Our results suggest that plasma instabilities can describe the spectra of some blazars and mimic the effects of IGMFs, depending on parameters such as intrinsic spectrum of the object, the density and temperature of the IGM, and the luminosity of the beam. On the other hand, we find that for our fiducial set of parameters plasma instabilities do not have a major impact on the spectra of some of the blazars studied. Therefore, they may be used for constraining IGMFs.


Sign in / Sign up

Export Citation Format

Share Document