inverse compton scattering
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 65)

H-INDEX

23
(FIVE YEARS 5)

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 111
Author(s):  
Denis Wittor ◽  
Matthias Hoeft ◽  
Marcus Brüggen

Radio relics are diffuse synchrotron sources that illuminate shock waves in the intracluster medium. In recent years, radio telescopes have provided detailed observations about relics. Consequently, cosmological simulations of radio relics need to provide a similar amount of detail. In this methodological work, we include information on adiabatic compression and expansion, which have been neglected in the past in the modelling of relics. In a cosmological simulation of a merging galaxy cluster, we follow the energy spectra of shock accelerated cosmic-ray electrons using Lagrangian tracer particles. On board of each tracer particle, we compute the temporal evolution of the energy spectrum under the influence of synchrotron radiation, inverse Compton scattering, and adiabatic compression and expansion. Exploratory tests show that the total radio power and, hence, the integrated radio spectrum are not sensitive to the adiabatic processes. This is attributed to small changes in the compression ratio over time.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012003
Author(s):  
Kritaporn Butsaracom ◽  
Brandon Khan Cantlay ◽  
Maneenate Wechakama

Abstract In this work, we aim to explain the latest data of cosmic-ray electrons from AMS-02 by an electron background model and pulsar electrons. We consider an electron background model which includes primary and secondary electrons. We assume that pulsars are major sources of the electron excess. Since electrons easily lose their energy through the interstellar radiation field and the magnetic field via inverse Compton scattering and synchrotron radiation, respectively, they propagate in a short length. We adopt nearby pulsar data in the distance of 1 kpc from the Australia Telescope National Facility (ATNF) pulsar catalogue. By using a Green’s function of an electron propagation model, we then fit pulsar parameters (i.e. the spectral index, the fraction of the total spin-down energy and the cutoff energy) for several cases of a single pulsar. With a combination of the electron background model, several cases of pulsar spectrum are able to explain the electron excess.


2021 ◽  
Vol 21 (11) ◽  
pp. 286
Author(s):  
Lu Wen ◽  
Ke-Yao Wu ◽  
Huan Yu ◽  
Jun Fang

Abstract The Crab nebula is a prominent pulsar wind nebula detected in multiband observations ranging from radio to very high-energy γ-rays. Recently, γ-rays with energies above 1 PeV have been detected by the Large High Altitude Air Shower Observatory, and the energy of the most energetic particles in the nebula can be constrained. In this paper, we investigate the broadest spectral energy distribution of the Crab nebula and the energy distribution of the electrons emitting the multiwavelength nonthermal emission based on a one-zone time-dependent model. The nebula is powered by the pulsar, and high-energy electrons/positrons with a broken power-law spectrum are continually injected in the nebula as the pulsar spins down. Multiwavelength nonthermal emission is generated by the leptons through synchrotron radiation and inverse Compton scattering. Using appropriate parameters, the detected fluxes for the nebula can be well reproduced, especially for the γ-rays from 102 MeV to 1 PeV. The results show that the detected γ-rays can be produced by the leptons via the inverse Compton scattering, and the lower limit of the Lorentz factor of the most energetic leptons is ∼ 8.5 × 109. It can be concluded that there exist electrons/positrons with energies higher than 4.3 PeV in the Crab nebula.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Juanjuan Huang ◽  
Benedikt Günther ◽  
Klaus Achterhold ◽  
Martin Dierolf ◽  
Franz Pfeiffer

X-ray absorption spectroscopy (XAS) is an element-selective technique that provides electronic and structural information of materials and reveals the essential mechanisms of the reactions involved. However, the technique is typically conducted at synchrotrons and usually only probes one element at a time. In this paper, a simultaneous two-color XAS setup at a laboratory-scale synchrotron facility is proposed based on inverse Compton scattering (ICS) at the Munich Compact Light Source (MuCLS), which is based on inverse Compton scattering (ICS). The setup utilizes two silicon crystals in a Laue geometry. A proof-of-principle experiment is presented where both silver (Ag) and palladium (Pd) K-edge X-ray absorption near-edge structure spectra were simultaneously measured. The simplicity of the setup facilitates its migration to other ICS facilities or maybe to other X-ray sources (e.g. a bending-magnet beamline). Such a setup has the potential to study reaction mechanisms and synergistic effects of chemical systems containing multiple elements of interest, such as a bimetallic catalyst system.


2021 ◽  
Author(s):  
Roland Crocker ◽  
Oscar Macias ◽  
Dougal Mackey ◽  
Mark Krumholz ◽  
Shin'ichiro Ando ◽  
...  

Abstract The Fermi Bubbles are giant, γ-ray emitting lobes emanating from the nucleus of the Milky Way [1, 2] discovered in ∼1-100 GeV data collected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope [3]. Previous work [4] has revealed substructure within the Fermi Bubbles that has been interpreted as a signature of collimated outflows from the Galaxy’s super-massive black hole. Here we show that much of the γ-ray emission associated to the brightest region of substructure – the so-called cocoon – is actually due to the Sagittarius dwarf spheroidal (Sgr dSph) galaxy. This large Milky Way satellite is viewed through the Fermi Bubbles from the position of the Solar System. As a tidally and ram-pressure stripped remnant, the Sgr dSph has no on-going star formation, but we demonstrate that its γ-ray signal is naturally explained by inverse Compton scattering of cosmic microwave back-ground photons by high-energy electron-positron pairs injected by the dwarf’s millisecond pulsar (MSP) population, combined with these objects’ magnetospheric emission. This finding suggests that MSPs likely produce significant γ-ray emission amongst old stellar populations, potentially confounding indirect dark matter searches in regions such as the Galactic Centre, the Andromeda galaxy, and other massive Milky Way dwarf spheroidals.


2021 ◽  
Author(s):  
Mariano Mendez ◽  
Konstantinos Karpouzas ◽  
Federico Garcia ◽  
Liang Zhang ◽  
Yuexin Zhang ◽  
...  

Abstract GRS 1915+1051 was the first stellar-mass black-hole in our Galaxy to display a superluminal radio jet2, similar to those observed in active galactic nuclei with a supermassive black hole at the centre3. It has been proposed that the radio emission in GRS 1915+105 is fed by instabilities in the accretion disc4 by which the inner parts of the accretion flow is ejected in the jet5–7. Here we show that there is a significant correlation between: (i) the radio flux, coming from the jet, and the flux of the iron emission line, coming from the disc and, (ii) the temperature of the corona that produces the high-energy part of the X-ray spectrum via inverse Compton scattering and the amplitude of a high-frequency variability component coming from the innermost part of the accretion flow. At the same time, the radio flux and the flux of the iron line are strongly anti-correlated with the temperature of the X-ray corona and the amplitude of the high-frequency variability component. These correlations persist over ~10 years, despite the highly variable X-ray and radio properties of the source in that period8,9. Our findings provide, for the first time, incontrovertible evidence that the energy that powers this black-hole system can be directed either to the X-ray corona or the jet. When this energy is used to power the corona, raising its temperature, there is less energy left to fuel the jet and the radio flux drops, and vice versa. These facts, plus the modelling of the variability in this source show conclusively that in GRS 1915+105 the X-ray corona morphs into the jet.


2021 ◽  
Vol 65 (8) ◽  
pp. 635-644
Author(s):  
M. S. Butuzova

Abstract The curved shape of the kiloparsec-scale jet of the blazar OJ 287 is analyzed in the framework of the precession of the central engine, on the existence on which a large number of studies over the past decades are based. The data necessary for the analysis on the kiloparsec-scale jet velocity and angle with the line of sight are obtained based on two competing assumptions about the X-ray emission mechanism of the OJ 287 jet. Namely, there were both the inverse Compton scattering of the cosmic microwave background under the assumption of relativistic kiloparsec-scale jet and the inverse Compton scattering of the central source radiation. For the latter one, we showed that the expected flux from the kiloparsec-scale jet in the gamma range does not exceed the limit set for it according to Fermi-LAT data. We found that only the period of the kiloparsec-scale jet helix, estimated in the framework of the inverse Compton scattering of the central source radiation, agrees with the precession period of the central engine, determined from the modulation of the peak values of 12‑year optical flares.


2021 ◽  
Vol 916 (2) ◽  
pp. 62
Author(s):  
L. H. Shang ◽  
X. Xu ◽  
S. J. Dang ◽  
Q. J. Zhi ◽  
J. T. Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document