scholarly journals Some Theoretical Studies of Two Gamma-Ray Blazars: PKS 0528+134 and Mrk 421

1998 ◽  
Vol 164 ◽  
pp. 93-94
Author(s):  
S. J. Qian ◽  
X. Z. Zhang ◽  
A. Witzel ◽  
T. P. Krichbaum ◽  
S. Britzen ◽  
...  

AbstractThe high energy gamma-ray flares observed in PKS 0528+134 are interpreted in terms of the external inverse Compton scattering (EICS) mechanism. The evolutional relationship between the gamma-ray flares and the associated mm-radio outbursts is investigated. The TeV/X-ray flare detected in May of 1994 from Mrk 421 is interpreted in terms of the SSC mechanism and it is shown that it may be due to the acceleration of relativistic electrons with an initially flat energy spectrum (N(E)∝E−s with s~1.5), rather than just a flattening of the high energy tail in the electron energy distribution of the source in the quiescent state.

2020 ◽  
Vol 497 (1) ◽  
pp. 988-1000 ◽  
Author(s):  
D M Worrall ◽  
M Birkinshaw ◽  
H L Marshall ◽  
D A Schwartz ◽  
A Siemiginowska ◽  
...  

ABSTRACT Despite the fact that kpc-scale inverse-Compton (iC) scattering of cosmic microwave background (CMB) photons into the X-ray band is mandated, proof of detection in resolved quasar jets is often insecure. High redshift provides favourable conditions due to the increased energy density of the CMB, and it allows constraints to be placed on the radio synchrotron-emitting electron component at high energies that are otherwise inaccessible. We present new X-ray, optical, and radio results from Chandra, HST, and the VLA for the core and resolved jet in the z = 3.69 quasar PKS J1421−0643. The X-ray jet extends for about 4.5 arcsec (32 kpc projected length). The jet’s radio spectrum is abnormally steep and consistent with electrons being accelerated to a maximum Lorentz factor of about 5000. Results argue in favour of the detection of iC X-rays for modest magnetic field strength of a few nT, Doppler factor of about 4, and viewing angle of about 15°, and predict the jet to be largely invisible in most other spectral bands including the far- and mid-infrared and high-energy gamma-ray. The jet power is estimated to be about 3 × 1046 erg s−1 which is of order a tenth of the quasar bolometric power, for an electron–positron jet. The jet radiative power is only about 0.07 per cent of the jet power, with a smaller radiated power ratio if the jet contains heavy particles, so most of the jet power is available for heating the intergalactic medium.


2019 ◽  
Vol 71 (5) ◽  
Author(s):  
Masaki Numazawa ◽  
Yuichiro Ezoe ◽  
Kumi Ishikawa ◽  
Takaya Ohashi ◽  
Yoshizumi Miyoshi ◽  
...  

Abstract We report on results of imaging and spectral studies of X-ray emission from Jupiter observed by Suzaku. In 2006, Suzaku found diffuse X-ray emission in 1–5 keV associated with Jovian inner radiation belts. It has been suggested that the emission is caused by the inverse-Compton scattering by ultra-relativistic electrons (∼50 MeV) in Jupiter’s magnetosphere. To confirm the existence of this emission and to understand its relation to the solar activity, we conducted an additional Suzaku observation in 2014 around the maximum of the 24th solar cycle. As a result, we successfully found the diffuse emission around Jupiter in 1–5 keV again, and also found point-like emission in 0.4–1 keV. The luminosity of the point-like emission, which was probably composed of solar X-ray scattering, charge exchange, or auroral bremsstrahlung emission, increased by a factor of ∼5 with respect to the findings from 2006, most likely due to an increase of the solar activity. The diffuse emission spectrum in the 1–5 keV band was well-fitted with a flat power-law function (Γ = 1.4 ± 0.1) as in the past observation, which supported the inverse-Compton scattering hypothesis. However, its spatial distribution changed from ∼12 × 4 Jovian radius (Rj) to ∼20 × 7 Rj. The luminosity of the diffuse emission increased by the smaller factor of ∼3. This indicates that the diffuse emission is not simply responding to the solar activity, which is also known to cause little effect on the distribution of high-energy electrons around Jupiter. Further sensitive study of the spatial and spectral distributions of the diffuse hard X-ray emission is important to understand how high-energy particles are accelerated in Jupiter’s magnetosphere.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 834
Author(s):  
Gianfranco Paternò ◽  
Paolo Cardarelli ◽  
Mauro Gambaccini ◽  
Angelo Taibi

It has been long recognized that dual-energy imaging could help to enhance the detectability of lesions in diagnostic radiology, by removing the contrast of surrounding tissues. Furthermore, X-ray attenuation is material specific and information about the object constituents can be extracted for tissue characterisation, i.e., to assess whether lesions represent a malignant or benign process. However, a true separation between the low and high energy components is not possible with conventional sources because of their broad X-ray spectrum, and the artifacts produced in the subtracted image can be only partially removed. Finally, dose issues have also prevented so far the application of dual-energy techniques within the clinical context. Very recently, a new intense and monochromatic X-ray source was proposed to fill the gap between a synchrotron radiation facility and the standard X-ray tube. Indeed, inverse Compton scattering (ICS) sources, which are based on the interaction of a powerful laser beam and a bright beam of relativistic electrons, are among the most promising innovative sources of monochromatic X and gamma radiation. In this contribution, we review the main features that allow an ICS source to meet the requirements of a medical imaging application. Specific examples of K-edge subtraction are then provided, to show the potential of ICS in clinical applications that require intravenous injection of a contrast medium.


2012 ◽  
Vol 12 ◽  
pp. 224-228
Author(s):  
N. SAHAKYAN

Recently Fermi LAT collaboration reported the detection of high energy gamma-ray signal from giant lobes of the radio galaxy Centaurus A. We discuss the origin of this radiation and the possible radiation mechanisms, including inverse-Compton scattering of low energy photons and interaction of relativistic protons with the ambient low density plasma.


2013 ◽  
Vol 31 (4) ◽  
pp. 607-611 ◽  
Author(s):  
Y.L. Ping ◽  
X.T. He ◽  
H. Zhang ◽  
B. Qiao ◽  
H.B. Cai ◽  
...  

AbstractA new inverse Compton scattering scheme for production of high-energy Gamma-ray sources is proposed in which a Giga-electronvolt (GeV) electron beam is injected into a thermal hohlraum. It is found that by increasing the hohlraum background temperature, the scattered photons experience kinematic pileup, resulting in more monochromatic spectrum and smaller scattering angle. When a relativistic electron beam with energy 1 GeV and charge 10nC is injected into a 0.5 keV hohlraum, 80% of the scattered photons have energy above 0.5 GeV.


2018 ◽  
Vol 14 (A30) ◽  
pp. 53-60
Author(s):  
Daniel A. Schwartz

AbstractQuasars with flat radio spectra and one-sided, arc-second scale, ≈ 100 mJy GHz radio jets are found to have similar scale X-ray jets in about 60% of such objects, even in short 5 to 10 ks Chandra observations. Jets emit in the GHz band via synchrotron radiation, as known from polarization measurements. The X-ray emission is explained most simply, i.e. with the fewest additional parameters, as inverse Compton (iC) scattering of cosmic microwave background (cmb) photons by the relativistic electrons in the jet. With physics based assumptions, one can estimate enthalpy fluxes upwards of 1046 erg s−1, sufficient to reverse cooling flows in clusters of galaxies, and play a significant role in the feedback process which correlates the masses of black holes and their host galaxy bulges. On a quasar-by-quasar basis, we can show that the total energy to power these jets can be supplied by the rotational energy of black holes with spin parameters as low as a = 0.3. For a few bright jets at redshifts less than 1, the Fermi gamma ray observatory shows upper limits at 10 Gev which fall below the fluxes predicted by the iC/cmb mechanism, proving the existence of multiple relativistic particle populations. At large redshifts, the cmb energy density is enhanced by a factor (1+z)4, so that iC/cmb must be the dominant mechanism for relativistic jets unless their rest frame magnetic field strength is hundreds of micro-Gauss.


2005 ◽  
Vol 13 ◽  
pp. 317-321
Author(s):  
Vahe’ Petrosian

AbstractEvidence for non-thermal activity in clusters of galaxies is well established from radio observations of synchrotron emission by relativistic electrons, and new windows (in EUV and Hard X-ray ranges) have provided more powerful tools for its investigation. The hard X-ray observations, notably from Coma, are summarized and results of a new RXTE observations of a high red-shift cluster are presented. It is shown that the most likely emission mechanism for these radiations is the inverse Compton scattering of the cosmic microwave background photons by the same electrons responsible for the radio radiation. Various scenarios for acceleration of the electrons are considered and it is shown that the most likely model is episodic acceleration by shocks or turbulence, presumably induced by merger activity, of high energy electrons injected into the inter-cluster medium by galaxies or active galactic nuclei.


2013 ◽  
Vol 9 (S296) ◽  
pp. 295-299
Author(s):  
Marie-Hélène Grondin ◽  
John W. Hewitt ◽  
Marianne Lemoine-Goumard ◽  
Thierry Reposeur ◽  

AbstractThe supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in γ-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The γ-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its γ-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and γ-ray domains are described in detail, as well as the possible origins of the high energy γ-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).


1992 ◽  
Vol 128 ◽  
pp. 207-208
Author(s):  
S. V. Bogovalov ◽  
YU. D. Kotov

AbstractSuper-hard γ-ray radiation spectra have been calculated. This radiation is generated near the velocity-of-light cylinder through the process of inverse-Compton scattering of relativistic electrons by thermal photons radiated by a neutron star. These calculations have been compared with observations of the Crab and Vela pulsars at 1000-GeV γ-ray energies. A correlation between γ-ray flares and those in soft (Ex ≃ lkeV) X-rays are predicted.


2003 ◽  
Vol 214 ◽  
pp. 70-83 ◽  
Author(s):  
T. P. Li

The energy range of hard X-rays is a key waveband to the study of high energy processes in celestial objects, but still remains poorly explored. In contrast to direct imaging methods used in the low energy X-ray and high energy gamma-ray bands, currently imaging in the hard X-ray band is mainly achieved through various modulation techniques. A new inversion technique, the direct demodulation method, has been developed since early 90s. with this technique, wide field and high resolution images can be derived from scanning data of a simple collimated detector. The feasibility of this technique has been confirmed by experiment, balloon-borne observation and analyzing simulated and real astronomical data. Based the development of methodology and instrumentation, a high energy astrophysics mission – Hard X-ray Modulation Telescope (HXMT) has been proposed and selected in China for a four-year Phase-A study. The main scientific objectives are a full-sky hard X-ray (20–200 keV) imaging survey and high signal-to-noise ratio timing studies of high energy sources.


Sign in / Sign up

Export Citation Format

Share Document